Novel Artificial Intelligence Applications in Energy: A Systematic Review
This systematic review examines state-of-the-art artificial intelligence applications in energy systems, assessing their performance, real-world deployments and transformative potential. Guided by PRISMA 2020, we searched Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar f...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/14/3747 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This systematic review examines state-of-the-art artificial intelligence applications in energy systems, assessing their performance, real-world deployments and transformative potential. Guided by PRISMA 2020, we searched Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar for English-language studies published between January 2015 and January 2025 that reported novel AI uses in energy, empirical results, or significant theoretical advances and passed peer review. After title–abstract screening and full-text assessment, it was determined that 129 of 3000 records met the inclusion criteria. The methodological quality, reproducibility and real-world validation were appraised, and the findings were synthesised narratively around four critical themes: reinforcement learning (35 studies), multi-agent systems (28), planning under uncertainty (25), and AI for resilience (22), with a further 19 studies covering other areas. Notable outcomes include DeepMind-based reinforcement learning cutting data centre cooling energy by 40%, multi-agent control boosting virtual power plant revenue by 28%, AI-enhanced planning slashing the computation time by 87% without sacrificing solution quality, battery management AI raising efficiency by 30%, and machine learning accelerating hydrogen catalyst discovery 200,000-fold. Across domains, AI consistently outperformed traditional techniques. The review is limited by its English-only scope, potential under-representation of proprietary industrial work, and the inevitable lag between rapid AI advances and peer-reviewed publication. Overall, the evidence positions AI as a pivotal enabler of cleaner, more reliable, and efficient energy systems, though progress will depend on data quality, computational resources, legacy system integration, equity considerations, and interdisciplinary collaboration. No formal review protocol was registered because this study is a comprehensive state-of-the-art assessment rather than a clinical intervention analysis. |
|---|---|
| ISSN: | 1996-1073 |