Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI)
Introduction Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approaches to study salutogenesis (transitioning from T2D...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMJ Publishing Group
2025-02-01
|
Series: | BMJ Open |
Online Access: | https://bmjopen.bmj.com/content/15/2/e097449.full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206764156485632 |
---|---|
author | Gerald McGwin Linda M Zangwill Nicholas Evans Shannon McWeeney Cecilia S Lee Bhavesh Patel Jeffrey C Edberg Cynthia Owsley Aaron Lee Cecilia Lee Sally L Baxter Michael Snyder Samantha Hurst Nicole Ehrhardt Christopher Chute Dawn S Matthies Julia P Owen Amir Bahmani Sally Baxter Edward Boyko Aaron Cohen Jorge Contreras Garrison Cottrell Virginia de Sa Jeffrey Edberg Irl Hirsch Michelle Hribar T.Y. Alvin Liu Bonnie Maldenado Sara Singer Bradley Voytek Joseph Yracheta Linda Zangwill |
author_facet | Gerald McGwin Linda M Zangwill Nicholas Evans Shannon McWeeney Cecilia S Lee Bhavesh Patel Jeffrey C Edberg Cynthia Owsley Aaron Lee Cecilia Lee Sally L Baxter Michael Snyder Samantha Hurst Nicole Ehrhardt Christopher Chute Dawn S Matthies Julia P Owen Amir Bahmani Sally Baxter Edward Boyko Aaron Cohen Jorge Contreras Garrison Cottrell Virginia de Sa Jeffrey Edberg Irl Hirsch Michelle Hribar T.Y. Alvin Liu Bonnie Maldenado Sara Singer Bradley Voytek Joseph Yracheta Linda Zangwill |
collection | DOAJ |
description | Introduction Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approaches to study salutogenesis (transitioning from T2DM to health resilience). The fundamental rationale for promoting health resilience in T2DM stems from its high prevalence of 10.5% of the world’s adult population and its contribution to many adverse health events.Methods AI-READI is a cross-sectional study whose target enrollment is 4000 people aged 40 and older, triple-balanced by self-reported race/ethnicity (Asian, black, Hispanic, white), T2DM (no diabetes, pre-diabetes and lifestyle-controlled diabetes, diabetes treated with oral medications or non-insulin injections and insulin-controlled diabetes) and biological sex (male, female) (Clinicaltrials.org approval number STUDY00016228). Data are collected in a multivariable protocol containing over 10 domains, including vitals, retinal imaging, electrocardiogram, cognitive function, continuous glucose monitoring, physical activity, home air quality, blood and urine collection for laboratory testing and psychosocial variables including social determinants of health. There are three study sites: Birmingham, Alabama; San Diego, California; and Seattle, Washington.Ethics and dissemination AI-READI aims to establish standards, best practices and guidelines for collection, preparation and sharing of the data for the purposes of AI/ML, including guidance from bioethicists. Following Findable, Accessible, Interoperable, Reusable principles, AI-READI can be viewed as a model for future efforts to develop other medical/health data sets targeted for AI/ML. AI-READI opens the door for novel insights in understanding T2DM salutogenesis. The AI-READI Consortium are disseminating the principles and processes of designing and implementing the AI-READI data set through publications. Those who download and use AI-READI data are encouraged to publish their results in the scientific literature. |
format | Article |
id | doaj-art-ff459d63852e4ba7956d93a5bf3d4ae9 |
institution | Kabale University |
issn | 2044-6055 |
language | English |
publishDate | 2025-02-01 |
publisher | BMJ Publishing Group |
record_format | Article |
series | BMJ Open |
spelling | doaj-art-ff459d63852e4ba7956d93a5bf3d4ae92025-02-07T06:30:15ZengBMJ Publishing GroupBMJ Open2044-60552025-02-0115210.1136/bmjopen-2024-097449Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) Gerald McGwin0Linda M Zangwill1Nicholas EvansShannon McWeeneyCecilia S Lee2Bhavesh PatelJeffrey C Edberg3Cynthia Owsley4Aaron LeeCecilia LeeSally L Baxter5Michael SnyderSamantha HurstNicole EhrhardtChristopher ChuteDawn S Matthies6Julia P Owen7Amir BahmaniSally BaxterEdward BoykoAaron CohenJorge ContrerasGarrison CottrellVirginia de SaJeffrey EdbergIrl HirschMichelle HribarT.Y. Alvin LiuBonnie MaldenadoSara SingerBradley VoytekJoseph YrachetaLinda Zangwill1 Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA4 Ophthalmology, University of California San Diego, La Jolla, California, USA5 Ophthalmology, University of Washington, Seattle, Washington, USA3 Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA1 Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA4 Ophthalmology, University of California San Diego, La Jolla, California, USA1 Ophthalmology and Visual Sciences, The University of Alabama at Birmingham, Birmingham, Alabama, USA5 Ophthalmology, University of Washington, Seattle, Washington, USAIntroduction Artificial Intelligence Ready and Equitable for Diabetes Insights (AI-READI) is a data collection project on type 2 diabetes mellitus (T2DM) to facilitate the widespread use of artificial intelligence and machine learning (AI/ML) approaches to study salutogenesis (transitioning from T2DM to health resilience). The fundamental rationale for promoting health resilience in T2DM stems from its high prevalence of 10.5% of the world’s adult population and its contribution to many adverse health events.Methods AI-READI is a cross-sectional study whose target enrollment is 4000 people aged 40 and older, triple-balanced by self-reported race/ethnicity (Asian, black, Hispanic, white), T2DM (no diabetes, pre-diabetes and lifestyle-controlled diabetes, diabetes treated with oral medications or non-insulin injections and insulin-controlled diabetes) and biological sex (male, female) (Clinicaltrials.org approval number STUDY00016228). Data are collected in a multivariable protocol containing over 10 domains, including vitals, retinal imaging, electrocardiogram, cognitive function, continuous glucose monitoring, physical activity, home air quality, blood and urine collection for laboratory testing and psychosocial variables including social determinants of health. There are three study sites: Birmingham, Alabama; San Diego, California; and Seattle, Washington.Ethics and dissemination AI-READI aims to establish standards, best practices and guidelines for collection, preparation and sharing of the data for the purposes of AI/ML, including guidance from bioethicists. Following Findable, Accessible, Interoperable, Reusable principles, AI-READI can be viewed as a model for future efforts to develop other medical/health data sets targeted for AI/ML. AI-READI opens the door for novel insights in understanding T2DM salutogenesis. The AI-READI Consortium are disseminating the principles and processes of designing and implementing the AI-READI data set through publications. Those who download and use AI-READI data are encouraged to publish their results in the scientific literature.https://bmjopen.bmj.com/content/15/2/e097449.full |
spellingShingle | Gerald McGwin Linda M Zangwill Nicholas Evans Shannon McWeeney Cecilia S Lee Bhavesh Patel Jeffrey C Edberg Cynthia Owsley Aaron Lee Cecilia Lee Sally L Baxter Michael Snyder Samantha Hurst Nicole Ehrhardt Christopher Chute Dawn S Matthies Julia P Owen Amir Bahmani Sally Baxter Edward Boyko Aaron Cohen Jorge Contreras Garrison Cottrell Virginia de Sa Jeffrey Edberg Irl Hirsch Michelle Hribar T.Y. Alvin Liu Bonnie Maldenado Sara Singer Bradley Voytek Joseph Yracheta Linda Zangwill Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) BMJ Open |
title | Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) |
title_full | Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) |
title_fullStr | Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) |
title_full_unstemmed | Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) |
title_short | Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) |
title_sort | cross sectional design and protocol for artificial intelligence ready and equitable atlas for diabetes insights ai readi |
url | https://bmjopen.bmj.com/content/15/2/e097449.full |
work_keys_str_mv | AT crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT geraldmcgwin crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT lindamzangwill crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT nicholasevans crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT shannonmcweeney crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT ceciliaslee crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT bhaveshpatel crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT jeffreycedberg crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT cynthiaowsley crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT aaronlee crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT cecilialee crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT sallylbaxter crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT michaelsnyder crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT samanthahurst crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT nicoleehrhardt crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT christopherchute crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT dawnsmatthies crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT juliapowen crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT amirbahmani crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT sallybaxter crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT edwardboyko crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT aaroncohen crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT jorgecontreras crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT garrisoncottrell crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT virginiadesa crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT jeffreyedberg crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT irlhirsch crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT michellehribar crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT tyalvinliu crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT bonniemaldenado crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT sarasinger crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT bradleyvoytek crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT josephyracheta crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi AT lindazangwill crosssectionaldesignandprotocolforartificialintelligencereadyandequitableatlasfordiabetesinsightsaireadi |