High-performance stamping forming process of 6061 aluminum alloy with pre-hardening

The 6061 aluminum alloy billets are subjected to solution quenching treatment under a solution heat treatment condition of 550 ℃ for 30 min. After quenching, the billets are artificially aged at 140 ℃ for 6 h to 18 h to obtain pre-hardening (PH) billets. The formability and mechanical properties of...

Full description

Saved in:
Bibliographic Details
Main Authors: DONG Mingyang, HU Zhili, LIU Peng
Format: Article
Language:zho
Published: Journal of Materials Engineering 2025-04-01
Series:Cailiao gongcheng
Subjects:
Online Access:https://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2024.000086
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The 6061 aluminum alloy billets are subjected to solution quenching treatment under a solution heat treatment condition of 550 ℃ for 30 min. After quenching, the billets are artificially aged at 140 ℃ for 6 h to 18 h to obtain pre-hardening (PH) billets. The formability and mechanical properties of the pre-hardening 6061 aluminum alloy billets are evaluated using room-temperature Erichsen cupping tests and uniaxial tensile tests. Additionally, the stamping trials for hat-shaped beam components are conducted to verify the feasibility of this technique for engineering applications. The results show that the yield strength (YS) of the PH-12 h pre-hardening billets is 186 MPa higher than that of the O-temper billets, and the tensile strength (TS) is 215 MPa higher than that of the O-temper billets, while the elongation (EL) and cupping values are comparable to those of the O-temper billets. The PH-18 h pre-hardening billets exhibit a maximum tensile strength of 391 MPa after 10% deformation, significantly exceeding that of the T6-temper aluminum alloy, demonstrating that the pre-hardening billets possess excellent strength-ductility balance. Furthermore, the hat-shaped beam components formed from pre-hardening billets exhibit tensile and yield strengths superior to those of the T6-temper aluminum alloy.
ISSN:1001-4381