A Systematic Retrospection and Reflections on Main Glacial Hazards of the Tibetan Plateau

Glacial hazards pose significant threats to millions globally, especially with rapid climate warming drawing increased attention. Understanding past glacial hazards on both global and regional scales is crucial for early warning systems. This study quantified glacier and glacial lake changes on the...

Full description

Saved in:
Bibliographic Details
Main Authors: Changjun Gu, Suju Li, Ming Liu, Bo Wei, Shengyue Jin, Xudong Guo, Ping Wang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/11/1862
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glacial hazards pose significant threats to millions globally, especially with rapid climate warming drawing increased attention. Understanding past glacial hazards on both global and regional scales is crucial for early warning systems. This study quantified glacier and glacial lake changes on the Tibetan Plateau (TP) over recent decades and analyzed the spatial and temporal distribution of major glacial hazards. It also focused on glacial lakes that have experienced outburst events by reconstructing long-term data for 48 lakes. Key findings include: (1) TP glaciers have generally shrunk, with glacier area decreasing from 57,100 km<sup>2</sup> in the first inventory to 44,400 km<sup>2</sup> in the second, primarily in the middle and eastern Himalayas between 5000 and 6000 m. Meanwhile, the number of glacial lakes increased from 14,487 in 1990 to 16,385 in 2020, expanding towards higher elevations and glacier melt zones. (2) Since 1900, 283 glacial hazards have occurred, including 97 glacier surges, 36 glacier-related slope failures, and 150 glacial lake outburst floods (GLOFs). Hazard frequency increased post-2000, especially in the Karakoram and eastern Himalayas, during June to September. (3) Changes in glacier numbers contribute most to hazard frequency (11.56%), followed by July’s temperature change (10.24%). Slope and June’s temperature changes combined have the highest interaction effect (37.59%). (4) Of the 48 lakes studied, four disappeared after outbursts, 38 remained stable, and six expanded. These insights aid in monitoring, early warnings, and disaster management.
ISSN:2072-4292