Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi

This article discusses the application of mathematics in biological inheritance problems, which are closely linked to mathematical studies, particularly in algebraic hyperstructures, including hypergroupoids, hypergroups, and -semigroups. The research aims to determine types of algebraic hyperstruc...

Full description

Saved in:
Bibliographic Details
Main Authors: Alifa Raida Alamsyah, Edi Kurniadi, Anita Triska
Format: Article
Language:English
Published: Department of Mathematics, Universitas Negeri Gorontalo 2025-02-01
Series:Jambura Journal of Mathematics
Subjects:
Online Access:https://ejurnal.ung.ac.id/index.php/jjom/article/view/28270
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850044559776546816
author Alifa Raida Alamsyah
Edi Kurniadi
Anita Triska
author_facet Alifa Raida Alamsyah
Edi Kurniadi
Anita Triska
author_sort Alifa Raida Alamsyah
collection DOAJ
description This article discusses the application of mathematics in biological inheritance problems, which are closely linked to mathematical studies, particularly in algebraic hyperstructures, including hypergroupoids, hypergroups, and -semigroups. The research aims to determine types of algebraic hyperstructures arising from genetic crossing in inheritance issues, with the crossing results represented in a set where two distinct hyperoperations are applied. Findings indicate that under the first hyperoperation, the algebraic hyperstructures formed include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup with one idempotent element, three identity elements, and one generator. Under the second hyperoperation the resulting algebraic hyperstructures include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup without idempotent elements, with three identity elements and three generators. Future research could develop various alternative hyperoperations on biological inheritance problems, generating a greater variety of algebraic hyperstructures. The results of this study indicate that the algebraic hyperstructure of a set depends on its hyperoperation.
format Article
id doaj-art-fea893b2ca794e91bfaa42bee1d0e886
institution DOAJ
issn 2654-5616
2656-1344
language English
publishDate 2025-02-01
publisher Department of Mathematics, Universitas Negeri Gorontalo
record_format Article
series Jambura Journal of Mathematics
spelling doaj-art-fea893b2ca794e91bfaa42bee1d0e8862025-08-20T02:54:54ZengDepartment of Mathematics, Universitas Negeri GorontaloJambura Journal of Mathematics2654-56162656-13442025-02-0171283310.37905/jjom.v7i1.282708886Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan BiologiAlifa Raida Alamsyah0Edi Kurniadi1Anita Triska2Universitas PadjadjaranUniversitas PadjadjaranUniversitas PadjadjaranThis article discusses the application of mathematics in biological inheritance problems, which are closely linked to mathematical studies, particularly in algebraic hyperstructures, including hypergroupoids, hypergroups, and -semigroups. The research aims to determine types of algebraic hyperstructures arising from genetic crossing in inheritance issues, with the crossing results represented in a set where two distinct hyperoperations are applied. Findings indicate that under the first hyperoperation, the algebraic hyperstructures formed include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup with one idempotent element, three identity elements, and one generator. Under the second hyperoperation the resulting algebraic hyperstructures include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup without idempotent elements, with three identity elements and three generators. Future research could develop various alternative hyperoperations on biological inheritance problems, generating a greater variety of algebraic hyperstructures. The results of this study indicate that the algebraic hyperstructure of a set depends on its hyperoperation.https://ejurnal.ung.ac.id/index.php/jjom/article/view/28270hyperstructurehypergroupsemihypergroupn-hybridinheritance
spellingShingle Alifa Raida Alamsyah
Edi Kurniadi
Anita Triska
Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
Jambura Journal of Mathematics
hyperstructure
hypergroup
semihypergroup
n-hybrid
inheritance
title Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
title_full Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
title_fullStr Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
title_full_unstemmed Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
title_short Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
title_sort penentuan hiperstruktur aljabar dan karakteristiknya dalam masalah pewarisan biologi
topic hyperstructure
hypergroup
semihypergroup
n-hybrid
inheritance
url https://ejurnal.ung.ac.id/index.php/jjom/article/view/28270
work_keys_str_mv AT alifaraidaalamsyah penentuanhiperstrukturaljabardankarakteristiknyadalammasalahpewarisanbiologi
AT edikurniadi penentuanhiperstrukturaljabardankarakteristiknyadalammasalahpewarisanbiologi
AT anitatriska penentuanhiperstrukturaljabardankarakteristiknyadalammasalahpewarisanbiologi