Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi
This article discusses the application of mathematics in biological inheritance problems, which are closely linked to mathematical studies, particularly in algebraic hyperstructures, including hypergroupoids, hypergroups, and -semigroups. The research aims to determine types of algebraic hyperstruc...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Department of Mathematics, Universitas Negeri Gorontalo
2025-02-01
|
| Series: | Jambura Journal of Mathematics |
| Subjects: | |
| Online Access: | https://ejurnal.ung.ac.id/index.php/jjom/article/view/28270 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850044559776546816 |
|---|---|
| author | Alifa Raida Alamsyah Edi Kurniadi Anita Triska |
| author_facet | Alifa Raida Alamsyah Edi Kurniadi Anita Triska |
| author_sort | Alifa Raida Alamsyah |
| collection | DOAJ |
| description | This article discusses the application of mathematics in biological inheritance problems, which are closely linked to mathematical studies, particularly in algebraic hyperstructures, including hypergroupoids, hypergroups, and -semigroups. The research aims to determine types of algebraic hyperstructures arising from genetic crossing in inheritance issues, with the crossing results represented in a set where two distinct hyperoperations are applied. Findings indicate that under the first hyperoperation, the algebraic hyperstructures formed include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup with one idempotent element, three identity elements, and one generator. Under the second hyperoperation the resulting algebraic hyperstructures include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup without idempotent elements, with three identity elements and three generators. Future research could develop various alternative hyperoperations on biological inheritance problems, generating a greater variety of algebraic hyperstructures. The results of this study indicate that the algebraic hyperstructure of a set depends on its hyperoperation. |
| format | Article |
| id | doaj-art-fea893b2ca794e91bfaa42bee1d0e886 |
| institution | DOAJ |
| issn | 2654-5616 2656-1344 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | Department of Mathematics, Universitas Negeri Gorontalo |
| record_format | Article |
| series | Jambura Journal of Mathematics |
| spelling | doaj-art-fea893b2ca794e91bfaa42bee1d0e8862025-08-20T02:54:54ZengDepartment of Mathematics, Universitas Negeri GorontaloJambura Journal of Mathematics2654-56162656-13442025-02-0171283310.37905/jjom.v7i1.282708886Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan BiologiAlifa Raida Alamsyah0Edi Kurniadi1Anita Triska2Universitas PadjadjaranUniversitas PadjadjaranUniversitas PadjadjaranThis article discusses the application of mathematics in biological inheritance problems, which are closely linked to mathematical studies, particularly in algebraic hyperstructures, including hypergroupoids, hypergroups, and -semigroups. The research aims to determine types of algebraic hyperstructures arising from genetic crossing in inheritance issues, with the crossing results represented in a set where two distinct hyperoperations are applied. Findings indicate that under the first hyperoperation, the algebraic hyperstructures formed include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup with one idempotent element, three identity elements, and one generator. Under the second hyperoperation the resulting algebraic hyperstructures include a commutative hypergroup, a regular hypergroup, a cyclic hypergroup, and an -semigroup without idempotent elements, with three identity elements and three generators. Future research could develop various alternative hyperoperations on biological inheritance problems, generating a greater variety of algebraic hyperstructures. The results of this study indicate that the algebraic hyperstructure of a set depends on its hyperoperation.https://ejurnal.ung.ac.id/index.php/jjom/article/view/28270hyperstructurehypergroupsemihypergroupn-hybridinheritance |
| spellingShingle | Alifa Raida Alamsyah Edi Kurniadi Anita Triska Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi Jambura Journal of Mathematics hyperstructure hypergroup semihypergroup n-hybrid inheritance |
| title | Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi |
| title_full | Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi |
| title_fullStr | Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi |
| title_full_unstemmed | Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi |
| title_short | Penentuan Hiperstruktur Aljabar dan Karakteristiknya dalam Masalah Pewarisan Biologi |
| title_sort | penentuan hiperstruktur aljabar dan karakteristiknya dalam masalah pewarisan biologi |
| topic | hyperstructure hypergroup semihypergroup n-hybrid inheritance |
| url | https://ejurnal.ung.ac.id/index.php/jjom/article/view/28270 |
| work_keys_str_mv | AT alifaraidaalamsyah penentuanhiperstrukturaljabardankarakteristiknyadalammasalahpewarisanbiologi AT edikurniadi penentuanhiperstrukturaljabardankarakteristiknyadalammasalahpewarisanbiologi AT anitatriska penentuanhiperstrukturaljabardankarakteristiknyadalammasalahpewarisanbiologi |