Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis
In this paper, an intelligent modeling approach is presented to predict the shear strength of the internal reinforced concrete (RC) beam-column joints and used to analyze the sensitivity of the influence factors on the shear strength. The proposed approach is established based on the famous boosting...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/8850417 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832555020198871040 |
---|---|
author | De-Cheng Feng Bo Fu |
author_facet | De-Cheng Feng Bo Fu |
author_sort | De-Cheng Feng |
collection | DOAJ |
description | In this paper, an intelligent modeling approach is presented to predict the shear strength of the internal reinforced concrete (RC) beam-column joints and used to analyze the sensitivity of the influence factors on the shear strength. The proposed approach is established based on the famous boosting-family ensemble machine learning (ML) algorithms, i.e., gradient boosting regression tree (GBRT), which generates a strong predictive model by integrating several weak predictors, which are obtained by the well-known individual ML algorithms, e.g., DT, ANN, and SVM. The strong model is boosted as each weak predictor has its own weight in the final combination according to the performance. Compared with the conventional mechanical-driven shear strength models, e.g., the well-known modified compression field theory (MCFT), the proposed model can avoid the complicated derivation process of shear mechanism and calibration of the involved empirical parameters; thus, it provides a more convenient, fast, and robust alternative way for predicting the shear strength of the internal RC joints. To train and test the GBRT model, a total of 86 internal RC joint specimens are collected from the literatures, and four traditional ML models and the MCFT model are also employed as comparisons. The results indicate that the GBRT model is superior to both the traditional ML models and MCFT model, as its degree-of-fitting is the highest and the predicting dispersion is the lowest. Finally, the model is used to investigate the influences of different parameters on the shear strength of the internal RC joint, and the sensitivity and importance of the corresponding parameters are obtained. |
format | Article |
id | doaj-art-fe9a598bc9894acba5276b91d522cdca |
institution | Kabale University |
issn | 1687-8086 1687-8094 |
language | English |
publishDate | 2020-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Civil Engineering |
spelling | doaj-art-fe9a598bc9894acba5276b91d522cdca2025-02-03T05:49:53ZengWileyAdvances in Civil Engineering1687-80861687-80942020-01-01202010.1155/2020/88504178850417Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity AnalysisDe-Cheng Feng0Bo Fu1Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 211189, ChinaSchool of Civil Engineering, Chang’an University, Xi’an 710061, ChinaIn this paper, an intelligent modeling approach is presented to predict the shear strength of the internal reinforced concrete (RC) beam-column joints and used to analyze the sensitivity of the influence factors on the shear strength. The proposed approach is established based on the famous boosting-family ensemble machine learning (ML) algorithms, i.e., gradient boosting regression tree (GBRT), which generates a strong predictive model by integrating several weak predictors, which are obtained by the well-known individual ML algorithms, e.g., DT, ANN, and SVM. The strong model is boosted as each weak predictor has its own weight in the final combination according to the performance. Compared with the conventional mechanical-driven shear strength models, e.g., the well-known modified compression field theory (MCFT), the proposed model can avoid the complicated derivation process of shear mechanism and calibration of the involved empirical parameters; thus, it provides a more convenient, fast, and robust alternative way for predicting the shear strength of the internal RC joints. To train and test the GBRT model, a total of 86 internal RC joint specimens are collected from the literatures, and four traditional ML models and the MCFT model are also employed as comparisons. The results indicate that the GBRT model is superior to both the traditional ML models and MCFT model, as its degree-of-fitting is the highest and the predicting dispersion is the lowest. Finally, the model is used to investigate the influences of different parameters on the shear strength of the internal RC joint, and the sensitivity and importance of the corresponding parameters are obtained.http://dx.doi.org/10.1155/2020/8850417 |
spellingShingle | De-Cheng Feng Bo Fu Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis Advances in Civil Engineering |
title | Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis |
title_full | Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis |
title_fullStr | Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis |
title_full_unstemmed | Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis |
title_short | Shear Strength of Internal Reinforced Concrete Beam-Column Joints: Intelligent Modeling Approach and Sensitivity Analysis |
title_sort | shear strength of internal reinforced concrete beam column joints intelligent modeling approach and sensitivity analysis |
url | http://dx.doi.org/10.1155/2020/8850417 |
work_keys_str_mv | AT dechengfeng shearstrengthofinternalreinforcedconcretebeamcolumnjointsintelligentmodelingapproachandsensitivityanalysis AT bofu shearstrengthofinternalreinforcedconcretebeamcolumnjointsintelligentmodelingapproachandsensitivityanalysis |