Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers

We build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivati...

Full description

Saved in:
Bibliographic Details
Main Authors: Cansel Yormaz, Simge Simsek, Serife Naz Elmas
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Fuzzy Systems
Online Access:http://dx.doi.org/10.1155/2018/7215049
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556032975437824
author Cansel Yormaz
Simge Simsek
Serife Naz Elmas
author_facet Cansel Yormaz
Simge Simsek
Serife Naz Elmas
author_sort Cansel Yormaz
collection DOAJ
description We build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivation formulas by using fuzzy quaternion numbers.
format Article
id doaj-art-fe9248ee44fd4cd693d32784249f59c3
institution Kabale University
issn 1687-7101
1687-711X
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Advances in Fuzzy Systems
spelling doaj-art-fe9248ee44fd4cd693d32784249f59c32025-02-03T05:46:33ZengWileyAdvances in Fuzzy Systems1687-71011687-711X2018-01-01201810.1155/2018/72150497215049Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion NumbersCansel Yormaz0Simge Simsek1Serife Naz Elmas2Department of Mathematics, Pamukkale University, Denizli 20070, TurkeyDepartment of Mathematics, Pamukkale University, Denizli 20070, TurkeyDepartment of Mathematics, Pamukkale University, Denizli 20070, TurkeyWe build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivation formulas by using fuzzy quaternion numbers.http://dx.doi.org/10.1155/2018/7215049
spellingShingle Cansel Yormaz
Simge Simsek
Serife Naz Elmas
Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
Advances in Fuzzy Systems
title Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
title_full Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
title_fullStr Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
title_full_unstemmed Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
title_short Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
title_sort quaternionic serret frenet frames for fuzzy split quaternion numbers
url http://dx.doi.org/10.1155/2018/7215049
work_keys_str_mv AT canselyormaz quaternionicserretfrenetframesforfuzzysplitquaternionnumbers
AT simgesimsek quaternionicserretfrenetframesforfuzzysplitquaternionnumbers
AT serifenazelmas quaternionicserretfrenetframesforfuzzysplitquaternionnumbers