Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers
We build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivati...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2018-01-01
|
Series: | Advances in Fuzzy Systems |
Online Access: | http://dx.doi.org/10.1155/2018/7215049 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832556032975437824 |
---|---|
author | Cansel Yormaz Simge Simsek Serife Naz Elmas |
author_facet | Cansel Yormaz Simge Simsek Serife Naz Elmas |
author_sort | Cansel Yormaz |
collection | DOAJ |
description | We build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivation formulas by using fuzzy quaternion numbers. |
format | Article |
id | doaj-art-fe9248ee44fd4cd693d32784249f59c3 |
institution | Kabale University |
issn | 1687-7101 1687-711X |
language | English |
publishDate | 2018-01-01 |
publisher | Wiley |
record_format | Article |
series | Advances in Fuzzy Systems |
spelling | doaj-art-fe9248ee44fd4cd693d32784249f59c32025-02-03T05:46:33ZengWileyAdvances in Fuzzy Systems1687-71011687-711X2018-01-01201810.1155/2018/72150497215049Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion NumbersCansel Yormaz0Simge Simsek1Serife Naz Elmas2Department of Mathematics, Pamukkale University, Denizli 20070, TurkeyDepartment of Mathematics, Pamukkale University, Denizli 20070, TurkeyDepartment of Mathematics, Pamukkale University, Denizli 20070, TurkeyWe build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study. Then, we give some differential geometric properties of this fuzzy quaternion. Moreover, we construct the Frenet frame for fuzzy split quaternions. We investigate Serret-Frenet derivation formulas by using fuzzy quaternion numbers.http://dx.doi.org/10.1155/2018/7215049 |
spellingShingle | Cansel Yormaz Simge Simsek Serife Naz Elmas Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers Advances in Fuzzy Systems |
title | Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers |
title_full | Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers |
title_fullStr | Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers |
title_full_unstemmed | Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers |
title_short | Quaternionic Serret-Frenet Frames for Fuzzy Split Quaternion Numbers |
title_sort | quaternionic serret frenet frames for fuzzy split quaternion numbers |
url | http://dx.doi.org/10.1155/2018/7215049 |
work_keys_str_mv | AT canselyormaz quaternionicserretfrenetframesforfuzzysplitquaternionnumbers AT simgesimsek quaternionicserretfrenetframesforfuzzysplitquaternionnumbers AT serifenazelmas quaternionicserretfrenetframesforfuzzysplitquaternionnumbers |