Maximum modulus of entire functions of two variables and arguments of coefficients of double power series

Let $mathcal{L}$ be {the} class of positive continuousfunctions on $(-infty,+infty)$ and {let} $mathcal{L}_+^2$ be{the} class of positive continuous increa-sing with respect toeach variable functions $gamma$ in $mathbb{R}^2$ such that $gamma(r_1,r_2)o +infty $ as $r_1+r_2o+infty.$ {We provethe follo...

Full description

Saved in:
Bibliographic Details
Main Authors: O. B. Skaskiv, A. O. Kuryliak
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2011-11-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/texts/2011/36_2/162-175.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849687157723103232
author O. B. Skaskiv
A. O. Kuryliak
author_facet O. B. Skaskiv
A. O. Kuryliak
author_sort O. B. Skaskiv
collection DOAJ
description Let $mathcal{L}$ be {the} class of positive continuousfunctions on $(-infty,+infty)$ and {let} $mathcal{L}_+^2$ be{the} class of positive continuous increa-sing with respect toeach variable functions $gamma$ in $mathbb{R}^2$ such that $gamma(r_1,r_2)o +infty $ as $r_1+r_2o+infty.$ {We provethe following} statement: {for all} entire functions of theform $ f(z_1,z_2)=sum_{n+m=0}^{+infty}a_{nm}z_1^nz_2^m$ suchthat $ |a_{nm}|leqexp{-(n+m)psi(n,m)} mbox{ for } n+mgeqk_0(f)$ and functions $f(z_1,1), f(1,z_2)$ are transcendent, $psiinmathcal{L}_+^2, $ {the} inequality$$mathfrak{M}_f(r_1,r_2) =O(M_f(r_1,r_2) h(ln M_f(r_1,r_2))),hinmathcal{L}, r^{vee}=min{r_1,r_2}o+infty,$${holds} where $M_f(r_1,r_2)=max{|f(z_1,z_2)|colon|z_1|=r_1,|z_2|=r_2},$$mathfrak{M}_f(r_1,r_2)=sum_{n+m=0}^{+infty}|a_{nm}|imes$$imes r_1^nr_2^m,$ {if and only if}egin{equation*}(finl)colon\sqrt{r_1r_2}=Oig(h(gamma(r_1,r_2)psi(r_1,r_2))ig), ^{vee}o+infty.end{equation*}
format Article
id doaj-art-fe59724091484601a5935ceada59d80a
institution DOAJ
issn 1027-4634
language deu
publishDate 2011-11-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-fe59724091484601a5935ceada59d80a2025-08-20T03:22:26ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342011-11-01362162175Maximum modulus of entire functions of two variables and arguments of coefficients of double power seriesO. B. SkaskivA. O. KuryliakLet $mathcal{L}$ be {the} class of positive continuousfunctions on $(-infty,+infty)$ and {let} $mathcal{L}_+^2$ be{the} class of positive continuous increa-sing with respect toeach variable functions $gamma$ in $mathbb{R}^2$ such that $gamma(r_1,r_2)o +infty $ as $r_1+r_2o+infty.$ {We provethe following} statement: {for all} entire functions of theform $ f(z_1,z_2)=sum_{n+m=0}^{+infty}a_{nm}z_1^nz_2^m$ suchthat $ |a_{nm}|leqexp{-(n+m)psi(n,m)} mbox{ for } n+mgeqk_0(f)$ and functions $f(z_1,1), f(1,z_2)$ are transcendent, $psiinmathcal{L}_+^2, $ {the} inequality$$mathfrak{M}_f(r_1,r_2) =O(M_f(r_1,r_2) h(ln M_f(r_1,r_2))),hinmathcal{L}, r^{vee}=min{r_1,r_2}o+infty,$${holds} where $M_f(r_1,r_2)=max{|f(z_1,z_2)|colon|z_1|=r_1,|z_2|=r_2},$$mathfrak{M}_f(r_1,r_2)=sum_{n+m=0}^{+infty}|a_{nm}|imes$$imes r_1^nr_2^m,$ {if and only if}egin{equation*}(finl)colon\sqrt{r_1r_2}=Oig(h(gamma(r_1,r_2)psi(r_1,r_2))ig), ^{vee}o+infty.end{equation*}http://matstud.org.ua/texts/2011/36_2/162-175.pdfentire functionspower seriesmaximum modulus
spellingShingle O. B. Skaskiv
A. O. Kuryliak
Maximum modulus of entire functions of two variables and arguments of coefficients of double power series
Математичні Студії
entire functions
power series
maximum modulus
title Maximum modulus of entire functions of two variables and arguments of coefficients of double power series
title_full Maximum modulus of entire functions of two variables and arguments of coefficients of double power series
title_fullStr Maximum modulus of entire functions of two variables and arguments of coefficients of double power series
title_full_unstemmed Maximum modulus of entire functions of two variables and arguments of coefficients of double power series
title_short Maximum modulus of entire functions of two variables and arguments of coefficients of double power series
title_sort maximum modulus of entire functions of two variables and arguments of coefficients of double power series
topic entire functions
power series
maximum modulus
url http://matstud.org.ua/texts/2011/36_2/162-175.pdf
work_keys_str_mv AT obskaskiv maximummodulusofentirefunctionsoftwovariablesandargumentsofcoefficientsofdoublepowerseries
AT aokuryliak maximummodulusofentirefunctionsoftwovariablesandargumentsofcoefficientsofdoublepowerseries