Numerical Simulation of the Effect of Electrical Stimulation on Disuse After Hip Replacement
<b>Background:</b> Total hip replacement replaces the femoral head, which cannot heal, with an artificial femoral shaft to ensure the patient’s normal life. However, due to the stress-masking effect of the proximal femur loaded with the artificial femur stem, the implant bears a large pa...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Biomedicines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-9059/13/2/471 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | <b>Background:</b> Total hip replacement replaces the femoral head, which cannot heal, with an artificial femoral shaft to ensure the patient’s normal life. However, due to the stress-masking effect of the proximal femur loaded with the artificial femur stem, the implant bears a large part of the load, resulting in insufficient stress stimulation of the proximal femur and bone waste remodeling. In turn, it is easy to lose bone, resulting in loosening. As a new treatment method, electrical stimulation has been widely used for bone loss, nonunion, and other diseases, and it has achieved good therapeutic effects. <b>Methods:</b> Therefore, in this work, electrical stimulation was introduced for postoperative density assessment, and a new disuse remodeling model was established to simulate density loss after remodeling and the resistance effect of electrical stimulation. The effects of various parameters on density loss in the model are discussed. <b>Results:</b> The simulation results revealed significant stress masking and density loss in the neck of the femur after hip replacement, and electrical stimulation placed in the neck of the femur may resist this density loss to a certain extent. The rate of bone mineral density reduction decreased after the addition of electrical stimulation, indicating that electrical stimulation can have a certain resistance to the density reduction caused by stress shielding, and this result is helpful for the rehabilitation of hip arthroplasty. |
|---|---|
| ISSN: | 2227-9059 |