Multi-Parameter Structural Optimization of Shale-Hydrocarbon-Dissolvable Ball Seat Slips Based on Safety and Performance Assessment Methods

As the core component for fracturing plug anchoring, dissolvable ball seat (DBS) slip performance directly determines the success of fracturing operations. However, frequent failures, such as tooth structural fractures, casing damage, and the slip breaking off entirely, compromise DBS reliability du...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuang Jing, Anle Mu, Zhen Chen, Xiaoyang Ying, Nengpeng Chen, Qingjie Ran
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7554
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the core component for fracturing plug anchoring, dissolvable ball seat (DBS) slip performance directly determines the success of fracturing operations. However, frequent failures, such as tooth structural fractures, casing damage, and the slip breaking off entirely, compromise DBS reliability during high-pressure fracturing. This study investigates DBS slip anchoring performance through finite element analysis (FEA), anchoring performance tests, and structural optimization. We established a comprehensive safety and performance assessment framework incorporating strength criteria, peak contact pressure, and anchoring uniformity. Comparative stress analysis of nail-type versus block-type slip systems revealed superior performance in block-type configurations, demonstrating more uniform slip–casing interfacial stress distribution. To further enhance the anchoring performance of the block-type slip, a structural parameter analysis was conducted to identify critical factors influencing anchoring capability, with tooth apex angle and inclination angle determined as key parameters. The influence laws of these parameters on anchoring performance were systematically investigated. Subsequently, a multi-parameter optimization methodology was employed to optimize the structural configuration of the block-type slip. The optimization results revealed that an optimal slip tooth apex angle of 80° or 85° and an inclination angle of 70° enhance the safety and anchoring reliability of the dissolvable ball seat slip while providing a theoretical framework for future slip structure design improvements. At present, the new structure of the soluble ball seat structure proposed in this paper has been successfully applied in some oil fields. Field tests show that the anchoring efficiency has been significantly improved. This research not only provides a theoretical framework for the design of sliding structures, but also offers reliable technical support for the efficient development of deep oil and gas resources.
ISSN:2076-3417