Molecular Pathways Linking High-Fat Diet and PM<sub>2.5</sub> Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM<sub>2.5&l...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Biomolecules |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2218-273X/14/12/1607 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM<sub>2.5</sub>). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses. This study was registered in the Open Science Framework. Thirty-three articles, mainly case–control studies and murine models, were reviewed, and they revealed that combined exposure to HFD and PM<sub>2.5</sub> resulted in the greatest weight gain (82.835 g, <i>p</i> = 0.048), alongside increases in high-density lipoproteins, insulin, and the superoxide dismutase. HFD enriched pathways linked to adipocytokine signaling in brown adipose tissue, while PM<sub>2.5</sub> impacted genes associated with fat formation. Both exposures downregulated protein metabolism pathways in white adipose tissue and activated stress-response pathways in cardiac tissue. Peroxisome proliferator-activated receptor and AMP-activated protein kinase signaling pathways in the liver were enriched, influencing non-alcoholic fatty liver disease. These findings highlight that combined exposure to HFD and PM<sub>2.5</sub> amplifies body weight gain, oxidative stress, and metabolic dysfunction, suggesting a synergistic interaction with significant implications for metabolic health. |
|---|---|
| ISSN: | 2218-273X |