Anti-Overturning Performance of Prefabricated Foundations for Distribution Line Poles

To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the influ...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Zhang, Chen Chen, Yan Yang, Kai Niu, Weihao Xu, Dehong Wang
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/15/2717
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the influence of different factors—such as pole embedment depth, foundation locations, soil type, and soil parameters—on the anti-overturning performance of pole prefabricated foundations. The results indicate that under ultimate load conditions, the reaction force distribution at the base of the foundation approximates a triangular pattern, and the lateral earth pressure on the pole follows an approximately quadratic parabolic distribution along the depth. When the foundation size increases from 0.8 m to 0.9 m, the bearing capacity of the prefabricated foundation improves by 8%. Furthermore, when the load direction changes from 0° to 45°, the foundation’s bearing capacity increases by 14%. When the foundation is buried at a depth of 1.0 m, compared with the ground position, the ultimate overturning moment of the prefabricated foundation increases by 10%. Based on field test results, finite element simulation results, and limit equilibrium theory, a calculation method for the anti-overturning bearing capacity of prefabricated pole foundations is developed, which can provide a practical reference for the engineering design of distribution line poles and their prefabricated foundations.
ISSN:2075-5309