Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep

The aim of this study is to evaluate the model performance in the classification of FAMACHA© scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA© scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA© scores are a colo...

Full description

Saved in:
Bibliographic Details
Main Authors: Oswaldo Margarito Torres-Chable, Cem Tırınk, Rosa Inés Parra-Cortés, Miguel Ángel Gastelum Delgado, Ignacio Vázquez Martínez, Armando Gomez-Vazquez, Aldenamar Cruz-Hernandez, Enrique Camacho-Pérez, Dany Alejandro Dzib-Cauich, Uğur Şen, Hacer Tüfekci, Lütfi Bayyurt, Hilal Tozlu Çelik, Ömer Faruk Yılmaz, Alfonso J. Chay-Canul
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/15/5/737
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850030772306575360
author Oswaldo Margarito Torres-Chable
Cem Tırınk
Rosa Inés Parra-Cortés
Miguel Ángel Gastelum Delgado
Ignacio Vázquez Martínez
Armando Gomez-Vazquez
Aldenamar Cruz-Hernandez
Enrique Camacho-Pérez
Dany Alejandro Dzib-Cauich
Uğur Şen
Hacer Tüfekci
Lütfi Bayyurt
Hilal Tozlu Çelik
Ömer Faruk Yılmaz
Alfonso J. Chay-Canul
author_facet Oswaldo Margarito Torres-Chable
Cem Tırınk
Rosa Inés Parra-Cortés
Miguel Ángel Gastelum Delgado
Ignacio Vázquez Martínez
Armando Gomez-Vazquez
Aldenamar Cruz-Hernandez
Enrique Camacho-Pérez
Dany Alejandro Dzib-Cauich
Uğur Şen
Hacer Tüfekci
Lütfi Bayyurt
Hilal Tozlu Çelik
Ömer Faruk Yılmaz
Alfonso J. Chay-Canul
author_sort Oswaldo Margarito Torres-Chable
collection DOAJ
description The aim of this study is to evaluate the model performance in the classification of FAMACHA© scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA© scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA© scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model’s accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA© scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA© score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections.
format Article
id doaj-art-fda4ee6ede4841b5b0bc53e4946b4402
institution DOAJ
issn 2076-2615
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Animals
spelling doaj-art-fda4ee6ede4841b5b0bc53e4946b44022025-08-20T02:59:07ZengMDPI AGAnimals2076-26152025-03-0115573710.3390/ani15050737Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey SheepOswaldo Margarito Torres-Chable0Cem Tırınk1Rosa Inés Parra-Cortés2Miguel Ángel Gastelum Delgado3Ignacio Vázquez Martínez4Armando Gomez-Vazquez5Aldenamar Cruz-Hernandez6Enrique Camacho-Pérez7Dany Alejandro Dzib-Cauich8Uğur Şen9Hacer Tüfekci10Lütfi Bayyurt11Hilal Tozlu Çelik12Ömer Faruk Yılmaz13Alfonso J. Chay-Canul14Division Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, MexicoDepartment of Animal Science, Faculty of Agriculture, Igdir University, TR76000 Iğdır, TürkiyeÁrea de Ciencias Agropecuarias, Grupo de Investigación en Ciencia Animal, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá CP 111166, ColombiaDivision Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, MexicoDivision Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, MexicoDivision Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, MexicoDivision Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, MexicoFacultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes s/n, Mérida CP 97203, Yucatán, MexicoTecnológico Nacional de México, Instituto Tecnológico Superior de Calkiní, Av. Ah-Canul, Calkiní CP 24900, Campeche, MexicoDepartment of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, TR55139 Samsun, TürkiyeDepartment of Animal Science, Faculty of Agriculture, Yozgat Bozok University, TR66000 Yozgat, TürkiyeDepartment of Animal Science, Faculty of Agriculture, Gaziosmanpaşa University, TR60250 Tokat, TürkiyeDepartment of Food Processing, Vocational School of Ulubey, Ordu University, TR52850 Ulubey, TürkiyeDepartment of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, TR55139 Samsun, TürkiyeDivision Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Teapa, km 25, Villahermosa CP 86280, Tabasco, MexicoThe aim of this study is to evaluate the model performance in the classification of FAMACHA© scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA© scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA© scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model’s accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA© scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA© score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections.https://www.mdpi.com/2076-2615/15/5/737FAMACHA©anemiasupport vector machinemachine learningclassification
spellingShingle Oswaldo Margarito Torres-Chable
Cem Tırınk
Rosa Inés Parra-Cortés
Miguel Ángel Gastelum Delgado
Ignacio Vázquez Martínez
Armando Gomez-Vazquez
Aldenamar Cruz-Hernandez
Enrique Camacho-Pérez
Dany Alejandro Dzib-Cauich
Uğur Şen
Hacer Tüfekci
Lütfi Bayyurt
Hilal Tozlu Çelik
Ömer Faruk Yılmaz
Alfonso J. Chay-Canul
Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
Animals
FAMACHA©
anemia
support vector machine
machine learning
classification
title Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
title_full Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
title_fullStr Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
title_full_unstemmed Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
title_short Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep
title_sort classification of famacha c scores with support vector machine algorithm from body condition score and hematological parameters in pelibuey sheep
topic FAMACHA©
anemia
support vector machine
machine learning
classification
url https://www.mdpi.com/2076-2615/15/5/737
work_keys_str_mv AT oswaldomargaritotorreschable classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT cemtırınk classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT rosainesparracortes classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT miguelangelgastelumdelgado classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT ignaciovazquezmartinez classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT armandogomezvazquez classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT aldenamarcruzhernandez classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT enriquecamachoperez classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT danyalejandrodzibcauich classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT ugursen classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT hacertufekci classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT lutfibayyurt classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT hilaltozlucelik classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT omerfarukyılmaz classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep
AT alfonsojchaycanul classificationoffamachascoreswithsupportvectormachinealgorithmfrombodyconditionscoreandhematologicalparametersinpelibueysheep