Scale Considerations and the Quantification of the Degree of Fracturing for Geological Strength Index (GSI) Assessments
This paper provides research that shows that the scale and quantification of the degree of fracturing in a rock mass should and can be considered when estimating geological strength index (GSI) ratings for rock mass strength and deformability estimates. In support of this notion, a brief review is p...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/15/8219 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper provides research that shows that the scale and quantification of the degree of fracturing in a rock mass should and can be considered when estimating geological strength index (GSI) ratings for rock mass strength and deformability estimates. In support of this notion, a brief review is provided to demonstrate why it is imperative that scale is considered when using GSI in engineering design. The impact of scale and scale effects on the engineering response of a rock mass typically requires a definition of fracture intensity relative to the volume or size of rock mass under consideration and the relative scale of the project being built. In this research three volume scales are considered: the volume of a structural domain, a representative elemental REV, and unit volume. A theoretical framework is established that links these three volume scales together, how they are estimated, and how they relate to parameters used to estimate engineering behaviour. Analysis of data from several examples and case histories for real rock masses is presented that compares and validates the use of a new and innovative but practical method (a sphere of unit volume) to estimate fracture intensity parameters VFC or P30 (fractures/m<sup>3</sup>) and P32 (fracture area—m<sup>2</sup>/m<sup>3</sup>) that is included on the vertical axis of the volumetric V-GSI chart. The research demonstrates that the unit volume approach to calculating VFC and P32 used in the V-GSI system compares well with other methods of estimating these two parameters (e.g., discrete fracture network (DFN) modelling). The research also demonstrates the reliability of the VFC-correlated rating scale included on the vertical axis of the V-GSI chart for use in estimating first-order strength and deformability estimates for rock masses. This quantification does not negate or detract from geological logic implicit in the original graphical GSI chart. |
|---|---|
| ISSN: | 2076-3417 |