Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs

Recently, the exponential arithmetic–geometric index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></m...

Full description

Saved in:
Bibliographic Details
Main Authors: Kinkar Chandra Das, Jayanta Bera
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/9/1391
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850030556632317952
author Kinkar Chandra Das
Jayanta Bera
author_facet Kinkar Chandra Das
Jayanta Bera
author_sort Kinkar Chandra Das
collection DOAJ
description Recently, the exponential arithmetic–geometric index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>) was introduced. The exponential arithmetic–geometric index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>) of a graph <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><msub><mi>v</mi><mi>i</mi></msub><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder></mstyle><mspace width="0.166667em"></mspace><msup><mi>e</mi><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><msub><mi>d</mi><mi>i</mi></msub><mo>+</mo><msub><mi>d</mi><mi>j</mi></msub></mrow><mrow><mn>2</mn><msqrt><mrow><msub><mi>d</mi><mi>i</mi></msub><msub><mi>d</mi><mi>j</mi></msub></mrow></msqrt></mrow></mfrac></mstyle></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mi>i</mi></msub></semantics></math></inline-formula> represents the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>. The characterization of extreme structures in relation to graph invariants from the class of unicyclic graphs is an important problem in discrete mathematics. Cruz et al., 2022 proposed a unified method for finding extremal unicyclic graphs for exponential degree-based graph invariants. However, in the case of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>, this method is insufficient for generating the maximal unicyclic graph. Consequently, the same article presented an open problem for the investigation of the maximal unicyclic graph with respect to this invariant. This article completely characterizes the maximal unicyclic graph in relation to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>.
format Article
id doaj-art-fd5d2af0d4aa44128a795a5e24e63368
institution DOAJ
issn 2227-7390
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-fd5d2af0d4aa44128a795a5e24e633682025-08-20T02:59:11ZengMDPI AGMathematics2227-73902025-04-01139139110.3390/math13091391Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic GraphsKinkar Chandra Das0Jayanta Bera1Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of KoreaDepartment of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of KoreaRecently, the exponential arithmetic–geometric index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>) was introduced. The exponential arithmetic–geometric index (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>) of a graph <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mstyle displaystyle="true"><munder><mo>∑</mo><mrow><msub><mi>v</mi><mi>i</mi></msub><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder></mstyle><mspace width="0.166667em"></mspace><msup><mi>e</mi><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><msub><mi>d</mi><mi>i</mi></msub><mo>+</mo><msub><mi>d</mi><mi>j</mi></msub></mrow><mrow><mn>2</mn><msqrt><mrow><msub><mi>d</mi><mi>i</mi></msub><msub><mi>d</mi><mi>j</mi></msub></mrow></msqrt></mrow></mfrac></mstyle></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>d</mi><mi>i</mi></msub></semantics></math></inline-formula> represents the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>. The characterization of extreme structures in relation to graph invariants from the class of unicyclic graphs is an important problem in discrete mathematics. Cruz et al., 2022 proposed a unified method for finding extremal unicyclic graphs for exponential degree-based graph invariants. However, in the case of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>, this method is insufficient for generating the maximal unicyclic graph. Consequently, the same article presented an open problem for the investigation of the maximal unicyclic graph with respect to this invariant. This article completely characterizes the maximal unicyclic graph in relation to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>A</mi><mi>G</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/13/9/1391extremal graphexponential arithmetic–geometric indexunicyclic graph
spellingShingle Kinkar Chandra Das
Jayanta Bera
Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
Mathematics
extremal graph
exponential arithmetic–geometric index
unicyclic graph
title Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
title_full Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
title_fullStr Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
title_full_unstemmed Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
title_short Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
title_sort resolving an open problem on the exponential arithmetic geometric index of unicyclic graphs
topic extremal graph
exponential arithmetic–geometric index
unicyclic graph
url https://www.mdpi.com/2227-7390/13/9/1391
work_keys_str_mv AT kinkarchandradas resolvinganopenproblemontheexponentialarithmeticgeometricindexofunicyclicgraphs
AT jayantabera resolvinganopenproblemontheexponentialarithmeticgeometricindexofunicyclicgraphs