The Spatiotemporal Fluctuations of Extreme Rainfall and Their Potential Influencing Factors in Sichuan Province, China, from 1970 to 2022
Utilizing daily data gathered from 63 meteorological stations across Sichuan Province between 1970 and 2022, this study investigates the spatial and temporal shifts in extreme precipitation patterns, alongside the connections between changes in extreme precipitation indices (EPIs) and the underlying...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/5/883 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Utilizing daily data gathered from 63 meteorological stations across Sichuan Province between 1970 and 2022, this study investigates the spatial and temporal shifts in extreme precipitation patterns, alongside the connections between changes in extreme precipitation indices (EPIs) and the underlying drivers, such as geographic characteristics and atmospheric circulation influences, within the region. The response of precipitation to these factors was examined through various methods, including linear trend analysis, the Mann–Kendall test, cumulative anomaly analysis, the Pettitt test, R/S analysis, Pearson correlation analysis, and wavelet transformation. The findings revealed that (1) Sichuan Province’s EPIs generally show an upward trend, with the simple daily intensity index (SDII) demonstrating the most pronounced increase. Notably, the escalation in precipitation indices was more substantial during the summer months compared to other seasons. (2) The magnitude of extreme precipitation variations showed a rising pattern in the plateau regions of western and northern Sichuan, whereas a decline was observed in the central and southeastern basin areas. (3) The number of days with precipitation exceeding 5 mm (R5mm), 10 mm (R10mm), and 20 mm (R20mm) all exhibited a significant change point in 2012, surpassing the 95% significance threshold. The future projections for EPIs, excluding consecutive dry days (CDDs), align with historical trends and suggest a continuing possibility of an upward shift. (4) Most precipitation indices, with the exception of CDDs, demonstrated a robust positive correlation with longitude and a negative correlation with both latitude and elevation. Except for the duration indicators (CDDs, CWDs), EPIs generally showed a gradual decrease with increasing altitude. (5) Atmospheric circulation patterns were found to have a substantial impact on extreme precipitation events in Sichuan Province, with the precipitation indices showing the strongest associations with the Atlantic Multidecadal Oscillation (AMO), the Sea Surface Temperature of the East Central Tropical Pacific (Niño 3.4), and the South China Sea Summer Monsoon Index (SCSSMI). Rising global temperatures and changes in subtropical high pressure in the western Pacific may be deeper factors contributing to changes in extreme precipitation. These insights enhance the understanding and forecasting of extreme precipitation events in the region. |
|---|---|
| ISSN: | 2072-4292 |