Collineation groups of translation planes of small dimension

A subgroup of the linear translation complement of a translation plane is geometrically irreducible if it has no invariant lines or subplanes. A similar definition can be given for geometrically primitive. If a group is geometrically primitive and solvable then it is fixed point free or metacyclic o...

Full description

Saved in:
Bibliographic Details
Main Author: T. G. Ostrom
Format: Article
Language:English
Published: Wiley 1981-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171281000549
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A subgroup of the linear translation complement of a translation plane is geometrically irreducible if it has no invariant lines or subplanes. A similar definition can be given for geometrically primitive. If a group is geometrically primitive and solvable then it is fixed point free or metacyclic or has a normal subgroup of order w2a+b where wa divides the dimension of the vector space. Similar conditions hold for solvable normal subgroups of geometrically primitive nonsolvable groups. When the dimension of the vector space is small there are restrictions on the group which might possibly be in the translation complement. We look at the situation for certain orders of the plane.
ISSN:0161-1712
1687-0425