Extended applications of molecular dynamics methods in multiscale studies of concrete composites: A review
This paper investigates the current landscape of multiscale studies in concrete composites incorporating molecular dynamics (MD) methods. Through a thorough literature analysis, it was determined that finite element, discrete element, homogenization, microphysical characterization, and machine learn...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-07-01
|
| Series: | Case Studies in Construction Materials |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2214509524013056 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates the current landscape of multiscale studies in concrete composites incorporating molecular dynamics (MD) methods. Through a thorough literature analysis, it was determined that finite element, discrete element, homogenization, microphysical characterization, and machine learning methods are better suited for integration with MD in multiscale studies of concrete composites. The paper delves into MD's application characteristics and the selection of force fields in multiscale studies and provides a summary of the combined applications between MD and various methods. Challenges identified include the optimization of MD simulations and the appropriate selection of combined methods. The conclusions underscore the growing recognition of MD's significance, advocating for rational multi-method integration in multiscale approaches to effectively advance research on concrete composites. |
|---|---|
| ISSN: | 2214-5095 |