Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies
This study utilizes artificial intelligence and machine learning to enhance drug discovery, focusing on the antidiabetic effects of Salvia splendens leaf extract among the global epidemic of diabetes mellitus. Employing the SMOTE oversampling strategy confirmed that the generated dataset mirrored th...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-03-01
|
Series: | Results in Chemistry |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211715625000645 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832542485489909760 |
---|---|
author | Hatun A. Alomar Wafaa M. El Kady Asmaa A. Mandour Amany A. Naim Neveen I. Ghali Taghreed A. Ibrahim Noha Fathallah |
author_facet | Hatun A. Alomar Wafaa M. El Kady Asmaa A. Mandour Amany A. Naim Neveen I. Ghali Taghreed A. Ibrahim Noha Fathallah |
author_sort | Hatun A. Alomar |
collection | DOAJ |
description | This study utilizes artificial intelligence and machine learning to enhance drug discovery, focusing on the antidiabetic effects of Salvia splendens leaf extract among the global epidemic of diabetes mellitus. Employing the SMOTE oversampling strategy confirmed that the generated dataset mirrored the activity pattern of the original data. An ADMET analysis of twelve compounds indicated that most complied with Lipinski's rule of five, demonstrating favorable oral bioavailability and safety profiles, except for two compounds, luteolin7-O-(4″,6″-di-O-α-L-rhamno-pyranosyl)-β-D-glucopyranoside and apigenin-7-O-β-D-rutinoside, which exhibited low solubility. Molecular docking studies on α-glucosidase and protein tyrosine phosphatase 1B revealed that compound 4 had the highest binding energy, surpassing that of the standard drug rosiglitazone. Molecular dynamic simulation studies indicated greater stability of docked α-glucosidase compared to tyrosine phosphatase after docking with the promising compounds. Overall, the findings highlight the potential of phenolic compounds from S. splendens as candidates for Type 2 diabetes management. |
format | Article |
id | doaj-art-fd1f84c7552446bd8127f7c9c9ea7f2a |
institution | Kabale University |
issn | 2211-7156 |
language | English |
publishDate | 2025-03-01 |
publisher | Elsevier |
record_format | Article |
series | Results in Chemistry |
spelling | doaj-art-fd1f84c7552446bd8127f7c9c9ea7f2a2025-02-04T04:10:24ZengElsevierResults in Chemistry2211-71562025-03-0114102081Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studiesHatun A. Alomar0Wafaa M. El Kady1Asmaa A. Mandour2Amany A. Naim3Neveen I. Ghali4Taghreed A. Ibrahim5Noha Fathallah6Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi ArabiaPharmacognosy Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt; Corresponding authors.Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, EgyptFaculty of Science, Al-Azhar University, Cairo, EgyptFaculty of Computers and Information Technology, Future University in Egypt (FUE), Cairo 11835, EgyptDepartment of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, EgyptPharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo 11835, Egypt; Corresponding authors.This study utilizes artificial intelligence and machine learning to enhance drug discovery, focusing on the antidiabetic effects of Salvia splendens leaf extract among the global epidemic of diabetes mellitus. Employing the SMOTE oversampling strategy confirmed that the generated dataset mirrored the activity pattern of the original data. An ADMET analysis of twelve compounds indicated that most complied with Lipinski's rule of five, demonstrating favorable oral bioavailability and safety profiles, except for two compounds, luteolin7-O-(4″,6″-di-O-α-L-rhamno-pyranosyl)-β-D-glucopyranoside and apigenin-7-O-β-D-rutinoside, which exhibited low solubility. Molecular docking studies on α-glucosidase and protein tyrosine phosphatase 1B revealed that compound 4 had the highest binding energy, surpassing that of the standard drug rosiglitazone. Molecular dynamic simulation studies indicated greater stability of docked α-glucosidase compared to tyrosine phosphatase after docking with the promising compounds. Overall, the findings highlight the potential of phenolic compounds from S. splendens as candidates for Type 2 diabetes management.http://www.sciencedirect.com/science/article/pii/S2211715625000645Salvia splendensArtificial intelligenceAntidiabeticsSMOTEDockingMolecular dynamic simulation |
spellingShingle | Hatun A. Alomar Wafaa M. El Kady Asmaa A. Mandour Amany A. Naim Neveen I. Ghali Taghreed A. Ibrahim Noha Fathallah Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies Results in Chemistry Salvia splendens Artificial intelligence Antidiabetics SMOTE Docking Molecular dynamic simulation |
title | Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies |
title_full | Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies |
title_fullStr | Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies |
title_full_unstemmed | Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies |
title_short | Computational antidiabetic assessment of Salvia splendens L. polyphenols: SMOTE, ADME, ProTox, docking, and molecular dynamic studies |
title_sort | computational antidiabetic assessment of salvia splendens l polyphenols smote adme protox docking and molecular dynamic studies |
topic | Salvia splendens Artificial intelligence Antidiabetics SMOTE Docking Molecular dynamic simulation |
url | http://www.sciencedirect.com/science/article/pii/S2211715625000645 |
work_keys_str_mv | AT hatunaalomar computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies AT wafaamelkady computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies AT asmaaamandour computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies AT amanyanaim computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies AT neveenighali computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies AT taghreedaibrahim computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies AT nohafathallah computationalantidiabeticassessmentofsalviasplendenslpolyphenolssmoteadmeprotoxdockingandmoleculardynamicstudies |