Vibration-Based Fault Diagnosis of Commutator Motor
This paper presents a study on vibration-based fault diagnosis techniques of a commutator motor (CM). Proposed techniques used vibration signals and signal processing methods. The authors analysed recognition efficiency for 3 states of the CM: healthy CM, CM with broken tooth on sprocket, CM with br...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Shock and Vibration |
| Online Access: | http://dx.doi.org/10.1155/2018/7460419 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a study on vibration-based fault diagnosis techniques of a commutator motor (CM). Proposed techniques used vibration signals and signal processing methods. The authors analysed recognition efficiency for 3 states of the CM: healthy CM, CM with broken tooth on sprocket, CM with broken rotor coil. Feature extraction methods called MSAF-RATIO-50-SFC (method of selection of amplitudes of frequencies ratio 50 second frequency coefficient), MSAF-RATIO-50-SFC-EXPANDED were implemented and used for an analysis. Feature vectors were obtained using MSAF-RATIO-50-SFC, MSAF-RATIO-50-SFC-EXPANDED, and sum of RSoV. Classification methods such as nearest mean (NM) classifier, linear discriminant analysis (LDA), and backpropagation neural network (BNN) were used for the analysis. A total efficiency of recognition was in the range of 79.16%–93.75% (TV). The proposed methods have practical application in industries. |
|---|---|
| ISSN: | 1070-9622 1875-9203 |