Implementation of Adaptive Observer and Mathematical Model Validation of the Evaporator of an Absorption Heat Transformer

This article presents the implementation of an adaptive observer to validate a falling film evaporator mathematical model. The evaporator consists of four coils, and each coil has four tubes. The heating flow in the first and third coils flows from bottom to top. Meanwhile, the heating flow in the s...

Full description

Saved in:
Bibliographic Details
Main Authors: Ricardo Fabricio Escobar-Jiménez, Isaac Justine Canela-Sánchez, Manuel Adam-Medina, Abisai Acevedo-Quiroz, Armando Huicochea-Rodríguez, David Juárez-Romero
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/23/3637
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents the implementation of an adaptive observer to validate a falling film evaporator mathematical model. The evaporator consists of four coils, and each coil has four tubes. The heating flow in the first and third coils flows from bottom to top. Meanwhile, the heating flow in the second and fourth coils flows from top to bottom. The mathematical model of the evaporator is parameterized with the geometry data of the experimental device. Since the mathematical model depends on the film breakdown onset Reynolds number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>O</mi><mi>n</mi><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) to estimate the evaporator temperatures, an adaptive observer is applied to estimate this unknown parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>O</mi><mi>n</mi><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>). The observer design is developed through the evaporator mathematical model. The research aims to estimate the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>O</mi><mi>n</mi><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> at different operating conditions to accurately estimate the evaporator temperatures since there is no general correlation for estimating it or a sensor to measure this parameter. Once the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>O</mi><mi>n</mi><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is estimated at different operating conditions, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>O</mi><mi>n</mi><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> results are injected into the model for validation. The results of implementing the observer showed that the temperature estimation errors are between 0.00003% and 0.02815%. Moreover, the temperatures simulated with the model using the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>e</mi><mrow><mi>O</mi><mi>n</mi><mi>s</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> estimated with the observers had errors between 0.04012% and 0.14160%.
ISSN:2227-7390