Chemical Biology of G-quadruplex and i-motif DNA: use of topologically constrained DNA

Tetrameric DNA structures such as G-quadruplex (G4) and i-motif (i-DNA) have attracted increasing interest in the last decades. They are indeed involved in many biological processes including translation regulation, pre-mRNA processing, mRNA targeting, telomere maintenance, etc. We have developed ch...

Full description

Saved in:
Bibliographic Details
Main Authors: Dejeu, Jérôme, Defrancq, Eric
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Chimie
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/chimie/articles/10.5802/crchim.256/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tetrameric DNA structures such as G-quadruplex (G4) and i-motif (i-DNA) have attracted increasing interest in the last decades. They are indeed involved in many biological processes including translation regulation, pre-mRNA processing, mRNA targeting, telomere maintenance, etc. We have developed chemical tools named TASQ (Template-Assembled Synthetic Quadruplex) to address the following scientific goals: (i) identify unambiguous (i.e., affine and specific) G4- and i-DNA-interacting ligands, (ii) identify proteins interacting with those structures and determine their cellular relevance and (iii) select specific antibodies for G4 and i-DNA. This review reports on our works over the past decade.
ISSN:1878-1543