An Adaptive Parameter Evolutionary Marine Predators Algorithm for Joint Resource Scheduling of Cooperative Jamming Networked Radar Systems
This paper investigates the formation joint resource scheduling problem from the perspective of cooperative jamming against radar systems. First, the formation survivability is redefined based on the task requirements. Then, a hierarchical adaptive scheduling strategy solution framework is construct...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/8/1325 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper investigates the formation joint resource scheduling problem from the perspective of cooperative jamming against radar systems. First, the formation survivability is redefined based on the task requirements. Then, a hierarchical adaptive scheduling strategy solution framework is constructed for state prediction and detection fusion of the networked radar system. Considering the scene constraints, an Improved Adaptive Parameter Evolution Marine Predators Algorithm is designed as an optimizer and embedded in the proposed framework to jointly optimize the platform beam allocation and jamming mode selection. Based on the original algorithm, real number random coding is used to perform dimensional conversion of decision variables, an adaptive parameter evolution mechanism is designed to reduce the dependence on algorithm parameters, and an adaptive selection mechanism for dominant strategies and a search intensity control strategy are proposed to help decision-makers explore the optimal resource scheduling strategy quickly and accurately. Finally, considering the formation maneuvering behavior and incomplete information, the proposed method is compared with existing base strategies in different typical scenarios. It is proved that the proposed strategy can fully exploit the limited jamming resources and maximize the survivability of the formation in radar system cooperative jamming scenarios, demonstrating superior jamming performance and shorter decision time. |
|---|---|
| ISSN: | 2072-4292 |