Innovative MIM diplexer with neural network enhanced refractive index detection for advanced photonic applications

Abstract This study introduces a high-performance 4-channel Metal-Insulator-Metal (MIM) diplexer, employing silver and Teflon, optimized for advanced photonic applications. The proposed diplexer, configured with two novel band-pass filters (BPFs), operates across four distinct wavelength bands (843 ...

Full description

Saved in:
Bibliographic Details
Main Authors: Seyed Abed Zonouri, Ali Basem, Younis Mohamed Atiah Al-zahy
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-83066-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study introduces a high-performance 4-channel Metal-Insulator-Metal (MIM) diplexer, employing silver and Teflon, optimized for advanced photonic applications. The proposed diplexer, configured with two novel band-pass filters (BPFs), operates across four distinct wavelength bands (843 nm, 1090 nm, 1452 nm, 1675 nm) by precisely manipulating the passband dimensions. Utilizing Finite-Difference Time-Domain (FDTD) simulations, the designed diplexer achieves exceptional sensitivity values of 3500 nm/RIU, 4250 nm/RIU, 3375 nm/RIU, and 4003 nm/RIU, along with high figures of merit (FOM) ranging from 113.4 to 124.7 1/RIU. Also, the compact design (400 nm × 830 nm) underscores its suitability for integrated photonic circuits and advanced sensing applications. Furthermore, to further enhance accuracy in detecting refractive index (RI) changes, a multilayer perceptron (MLP) neural network was employed, ensuring the highest sensor accuracy. The accuracy of the MIM diplexer’s RI measurements was statistically validated through a one-sample t-test, confirming the sensor’s reliability. Comparative analysis with existing sensors highlights the diplexer’s superior sensitivity and efficiency, setting a new benchmark in optical communication and photonic sensing technologies. This work paves the way for future advancements in miniaturized, high-sensitivity optical devices, offering robust solutions for next-generation communication and sensing systems.
ISSN:2045-2322