Mix proportion test and engineering characteristics analysis of loess-based cement slurry material
To address the challenges of limited space, quality control issues, and ensuring stable self-compaction of backfill materials in trench backfilling projects, a loess-based cement slurry was developed as a flowable backfill material by using loess as the primary base material and incorporating an app...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-05-01
|
| Series: | Frontiers in Materials |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fmats.2025.1604066/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850037871048654848 |
|---|---|
| author | Laping He Zhonghua Ge Zhao Long Zhao Long Zhiyuan Guo Shuaihua Ye |
| author_facet | Laping He Zhonghua Ge Zhao Long Zhao Long Zhiyuan Guo Shuaihua Ye |
| author_sort | Laping He |
| collection | DOAJ |
| description | To address the challenges of limited space, quality control issues, and ensuring stable self-compaction of backfill materials in trench backfilling projects, a loess-based cement slurry was developed as a flowable backfill material by using loess as the primary base material and incorporating an appropriate amount of admixture for solidification and improvement. The permeability, collapsibility, and disintegration of the loess-based cement slurry were analyzed by varying the cement content and curing age. The slump test was first conducted to determine the optimal water content for varying cement contents, aiming for a slump of 180 mm. Subsequently, the compressive strength was tested using an orthogonal experimental design. The analysis revealed the optimal mix ratio for the loess-based cement slurry: 8% naphthalene sulfonate formaldehyde condensate, 3% sodium sulfate, 0.5% sodium thiosulfate, and 0.08% ethylene glycol. Experimental results indicated that with 4% cement content, the loess-based cement slurry exhibited a maximum permeability coefficient of 0.977 × 10−5 and a maximum collapsibility coefficient of 0.865 × 10−2, confirming that both permeability and collapsibility meet the required standards. When the cement content exceeds 6%, the cement paste shows minimal collapse. This study offers an efficient and reliable technical solution for backfilling operations in loess regions. |
| format | Article |
| id | doaj-art-fb40455368a540b0a37890f1b93abda2 |
| institution | DOAJ |
| issn | 2296-8016 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| series | Frontiers in Materials |
| spelling | doaj-art-fb40455368a540b0a37890f1b93abda22025-08-20T02:56:44ZengFrontiers Media S.A.Frontiers in Materials2296-80162025-05-011210.3389/fmats.2025.16040661604066Mix proportion test and engineering characteristics analysis of loess-based cement slurry materialLaping He0Zhonghua Ge1Zhao Long2Zhao Long3Zhiyuan Guo4Shuaihua Ye5Gansu CSCEC Municipal Engineering Investigation and Design Institute Co., Ltd, Lanzhou, Gansu, ChinaGansu Civil Aviation Airport Group Co., Ltd., Lanzhou, Gansu, ChinaGansu CSCEC Municipal Engineering Investigation and Design Institute Co., Ltd, Lanzhou, Gansu, ChinaSchool of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu, ChinaGansu CSCEC Municipal Engineering Investigation and Design Institute Co., Ltd, Lanzhou, Gansu, ChinaSchool of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu, ChinaTo address the challenges of limited space, quality control issues, and ensuring stable self-compaction of backfill materials in trench backfilling projects, a loess-based cement slurry was developed as a flowable backfill material by using loess as the primary base material and incorporating an appropriate amount of admixture for solidification and improvement. The permeability, collapsibility, and disintegration of the loess-based cement slurry were analyzed by varying the cement content and curing age. The slump test was first conducted to determine the optimal water content for varying cement contents, aiming for a slump of 180 mm. Subsequently, the compressive strength was tested using an orthogonal experimental design. The analysis revealed the optimal mix ratio for the loess-based cement slurry: 8% naphthalene sulfonate formaldehyde condensate, 3% sodium sulfate, 0.5% sodium thiosulfate, and 0.08% ethylene glycol. Experimental results indicated that with 4% cement content, the loess-based cement slurry exhibited a maximum permeability coefficient of 0.977 × 10−5 and a maximum collapsibility coefficient of 0.865 × 10−2, confirming that both permeability and collapsibility meet the required standards. When the cement content exceeds 6%, the cement paste shows minimal collapse. This study offers an efficient and reliable technical solution for backfilling operations in loess regions.https://www.frontiersin.org/articles/10.3389/fmats.2025.1604066/fullloess-based cement slurrymix proportionengineering characteristicscompressive strengthorthogonal test |
| spellingShingle | Laping He Zhonghua Ge Zhao Long Zhao Long Zhiyuan Guo Shuaihua Ye Mix proportion test and engineering characteristics analysis of loess-based cement slurry material Frontiers in Materials loess-based cement slurry mix proportion engineering characteristics compressive strength orthogonal test |
| title | Mix proportion test and engineering characteristics analysis of loess-based cement slurry material |
| title_full | Mix proportion test and engineering characteristics analysis of loess-based cement slurry material |
| title_fullStr | Mix proportion test and engineering characteristics analysis of loess-based cement slurry material |
| title_full_unstemmed | Mix proportion test and engineering characteristics analysis of loess-based cement slurry material |
| title_short | Mix proportion test and engineering characteristics analysis of loess-based cement slurry material |
| title_sort | mix proportion test and engineering characteristics analysis of loess based cement slurry material |
| topic | loess-based cement slurry mix proportion engineering characteristics compressive strength orthogonal test |
| url | https://www.frontiersin.org/articles/10.3389/fmats.2025.1604066/full |
| work_keys_str_mv | AT lapinghe mixproportiontestandengineeringcharacteristicsanalysisofloessbasedcementslurrymaterial AT zhonghuage mixproportiontestandengineeringcharacteristicsanalysisofloessbasedcementslurrymaterial AT zhaolong mixproportiontestandengineeringcharacteristicsanalysisofloessbasedcementslurrymaterial AT zhaolong mixproportiontestandengineeringcharacteristicsanalysisofloessbasedcementslurrymaterial AT zhiyuanguo mixproportiontestandengineeringcharacteristicsanalysisofloessbasedcementslurrymaterial AT shuaihuaye mixproportiontestandengineeringcharacteristicsanalysisofloessbasedcementslurrymaterial |