In Situ Synthesis and Characterization of Graphitic Carbon Nitride/Metakaolin Composite Photocatalysts Using a Commercial Kaolin
Kaolin-based graphitic carbon nitride (g-CNx) composite photocatalysts were synthesized from a urea precursor using a commercial kaolin. Structural characterization by X-ray diffraction and infrared spectroscopy (FTIR) verified the successful thermal polycondensation of g-CNx along the thermal dehyd...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-09-01
|
| Series: | Crystals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4352/14/9/793 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Kaolin-based graphitic carbon nitride (g-CNx) composite photocatalysts were synthesized from a urea precursor using a commercial kaolin. Structural characterization by X-ray diffraction and infrared spectroscopy (FTIR) verified the successful thermal polycondensation of g-CNx along the thermal dehydroxylation of kaolinite to metakaolin at 550 °C. The g-CNx content of the composites were estimated by thermogravimetry and CHN analysis, ranging from ca. 87 m/m% to ca. 2 m/m% of dry mass. The addition of kaolin during the composite synthesis was found to have a significant effect: the yield of in situ formed g-CNx drastically decreased (from ca. 4.9 m/m% to 3.8–0.1 m/m%) with increasing kaolin content. CHN and FTIR indicated the presence of nitrogen-rich g-CNx, having a specific surface area of 50 m<sup>2</sup>/g, which synergistically increased after composite synthesis to 67–82 m<sup>2</sup>/g. Estimated optical band gaps indicated the affinity to absorb in the visible light spectrum (λ < 413 nm). Photocatalytic activity upon both UV and artificial sunlight irradiation was observed by hydroxyl radical evolution, however, without the synergistic effect expected from the favorable porosity. |
|---|---|
| ISSN: | 2073-4352 |