Alzheimer’s Disease Prediction via Brain Structural-Functional Deep Fusing Network
Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer’s disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this work, a novel model ter...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2023-01-01
|
| Series: | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/10320341/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer’s disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this work, a novel model termed cross-modal transformer generative adversarial network (CT-GAN) is proposed to effectively fuse the functional and structural information contained in functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The CT-GAN can learn topological features and generate multimodal connectivity from multimodal imaging data in an efficient end-to-end manner. Moreover, the swapping bi-attention mechanism is designed to gradually align common features and effectively enhance the complementary features between modalities. By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections. Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively. The proposed model also provides new insights into detecting AD-related abnormal neural circuits. |
|---|---|
| ISSN: | 1534-4320 1558-0210 |