Deciphering microbial interactions in synthetic human gut microbiome communities

Abstract The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model‐guided framework to predict higher‐dimensional consortia from time‐resolved measurements of lower‐order assemblages. This method was employed to dec...

Full description

Saved in:
Bibliographic Details
Main Authors: Ophelia S Venturelli, Alex V Carr, Garth Fisher, Ryan H Hsu, Rebecca Lau, Benjamin P Bowen, Susan Hromada, Trent Northen, Adam P Arkin
Format: Article
Language:English
Published: Springer Nature 2018-06-01
Series:Molecular Systems Biology
Subjects:
Online Access:https://doi.org/10.15252/msb.20178157
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model‐guided framework to predict higher‐dimensional consortia from time‐resolved measurements of lower‐order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi‐species community dynamics, as opposed to higher‐order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history‐dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human‐associated intestinal species and illuminated design principles of microbial communities.
ISSN:1744-4292