A New Method to Enhance the Light–Matter Interaction by Controlling the Resonance of Electrons

The manipulation of surface plasmon polaritons (SPPs) plays an essential role in plasmonic science and technology. However, the modulation efficiency and size of the device in the traditional method suffer from weak light–matter interaction. Herein, we propose a new method to enhance the light–matte...

Full description

Saved in:
Bibliographic Details
Main Authors: Xuefang Hu, Haoyang Mao, Sisi Yang, Changgui Lu, Xiangyue Zhao, Mengjia Lu
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/2/95
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The manipulation of surface plasmon polaritons (SPPs) plays an essential role in plasmonic science and technology. However, the modulation efficiency and size of the device in the traditional method suffer from weak light–matter interaction. Herein, we propose a new method to enhance the light–matter interaction by controlling the resonance of electrons in a sandwich structure which is composed of an interdigital electrode, dielectric, and doped semiconductor. The numerical results show that the resonance of electrons occurs when their vibrational frequency under electrostatic field matches well with the oscillation frequency of the propagating SPPs. The intensity of the electric field is enhanced about 8%, which can be utilized to improve the modulation efficiency and minimize the footprint of device to a great extent. These findings pave a new way towards higher precision sensor and more compact modulator.
ISSN:2304-6732