Context-Seq: CRISPR-Cas9 targeted nanopore sequencing for transmission dynamics of antimicrobial resistance
Abstract Precisely understanding how and to what extent antimicrobial resistance (AMR) is exchanged between animals and humans is needed to inform control strategies. Metagenomic sequencing has low detection for rare targets such as antibiotic resistance genes, while whole genome sequencing of isola...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60491-0 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Precisely understanding how and to what extent antimicrobial resistance (AMR) is exchanged between animals and humans is needed to inform control strategies. Metagenomic sequencing has low detection for rare targets such as antibiotic resistance genes, while whole genome sequencing of isolates misses exchange between uncultured bacterial species. We introduce Context-Seq, CRISPR-Cas9 targeted sequencing of ARGs and their genomic context with long-reads. Using Context-Seq, we investigate genetically similar AMR elements containing the ARGs bla CTX-M and bla TEM between adults, children, poultry, and dogs in Nairobi, Kenya. We identify genetically distinct clusters containing bla TEM and bla CTX-M that are shared between animals and humans within and between households. We also uncover potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumoniae, and Haemophilus influenzae in this study context. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR. |
|---|---|
| ISSN: | 2041-1723 |