Approximation by Parametric Extension of Szász-Mirakjan-Kantorovich Operators Involving the Appell Polynomials

The purpose of this article is to introduce a Kantorovich variant of Szász-Mirakjan operators by including the Dunkl analogue involving the Appell polynomials, namely, the Szász-Mirakjan-Jakimovski-Leviatan-type positive linear operators. We study the global approximation in terms of uniform modulus...

Full description

Saved in:
Bibliographic Details
Main Authors: Md. Nasiruzzaman, A. F. Aljohani
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/8863664
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this article is to introduce a Kantorovich variant of Szász-Mirakjan operators by including the Dunkl analogue involving the Appell polynomials, namely, the Szász-Mirakjan-Jakimovski-Leviatan-type positive linear operators. We study the global approximation in terms of uniform modulus of smoothness and calculate the local direct theorems of the rate of convergence with the help of Lipschitz-type maximal functions in weighted space. Furthermore, the Voronovskaja-type approximation theorems of this new operator are also presented.
ISSN:2314-8896
2314-8888