Abundant Symmetry-Breaking Solutions of the Nonlocal Alice–Bob Benjamin–Ono System
The Benjamin–Ono equation is a useful model to describe the long internal gravity waves in deep stratified fluids. In this paper, the nonlocal Alice–Bob Benjamin–Ono system is induced via the parity and time-reversal symmetry reduction. By introducing an extended Bäcklund transformation, the symmetr...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/2370970 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Benjamin–Ono equation is a useful model to describe the long internal gravity waves in deep stratified fluids. In this paper, the nonlocal Alice–Bob Benjamin–Ono system is induced via the parity and time-reversal symmetry reduction. By introducing an extended Bäcklund transformation, the symmetry-breaking soliton, breather, and lump solutions for this system are obtained through the derived Hirota bilinear form. By taking suitable constants in the involved ansatz functions, abundant fascinating symmetry-breaking structures of the related explicit solutions are shown. |
---|---|
ISSN: | 1076-2787 1099-0526 |