Average Analytic Ranks of Elliptic Curves over Number Fields

We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In particular, under the assumptions that all elliptic curves over a number field K are modular and have L-functions which satisfy the Generalized Riemann Hypothesis, we show that the average...

Full description

Saved in:
Bibliographic Details
Main Author: Tristan Phillips
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509424001270/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We give a conditional bound for the average analytic rank of elliptic curves over an arbitrary number field. In particular, under the assumptions that all elliptic curves over a number field K are modular and have L-functions which satisfy the Generalized Riemann Hypothesis, we show that the average analytic rank of isomorphism classes of elliptic curves over K is bounded above by $(9\deg (K)+1)/2$ , when ordered by naive height. A key ingredient in the proof is giving asymptotics for the number of elliptic curves over an arbitrary number field with a prescribed local condition; these results are obtained by proving general results for counting points of bounded height on weighted projective stacks with a prescribed local condition, which may be of independent interest.
ISSN:2050-5094