Evaluation of Fatty Acid Waste in the Synthesis of Oligo(Ether-Ester)s
In this study, the waste of sunflower oil refinement was converted to a fatty acid glycidyl ester (FAGE). An unsaturated oligo(ether-ester) (OEE) was synthesized by ring-opening polymerization using propylene oxide (PO) and FAGE. Oligo(ether-ester) production was achieved with a high yield of 80% at...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | International Journal of Polymer Science |
Online Access: | http://dx.doi.org/10.1155/2019/1519593 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, the waste of sunflower oil refinement was converted to a fatty acid glycidyl ester (FAGE). An unsaturated oligo(ether-ester) (OEE) was synthesized by ring-opening polymerization using propylene oxide (PO) and FAGE. Oligo(ether-ester) production was achieved with a high yield of 80% at 5 h and 0°C when the mole ratio of PO : FAGE was 1 : 1. Synthesized OEE was characterized by FTIR and several chemical analysis methods. According to the TGA results, T5, T10, and T50 values of OEE-styrene copolymers increased up to a 7 : 3 mole ratio then decreased. The weight losses of these copolymers changed in the range of 3-5%. The data of longitudinal and transversal wave velocities showed that copolymers with styrene had better elastic properties and impact resistances compared to those with pure polystyrene. |
---|---|
ISSN: | 1687-9422 1687-9430 |