Improving the Accuracy of Batik Classification using Deep Convolutional Auto Encoder
This research investigates the development of model deep convolutional autoencoders to enhance the classification of digital batik images. The dataset used was sourced from Kaggle. The autoencoder was employed to enrich the image data prior to convolutional processing. By forcing the autoencoder to...
Saved in:
Main Authors: | Muhammad Faqih Dzulqarnain, Abdul Fadlil, Imam Riadi |
---|---|
Format: | Article |
Language: | English |
Published: |
Institut Teknologi Dirgantara Adisutjipto
2024-12-01
|
Series: | Compiler |
Subjects: | |
Online Access: | https://ejournals.itda.ac.id/index.php/compiler/article/view/2649 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Classification of Riau Batik Motifs Using the Convolutional Neural Network (CNN) Algorithm
by: Dhea Amanda Ramadhan, et al.
Published: (2024-11-01) -
Penerapan Library AR.js pada Aplikasi e-Label Batik untuk Mendukung Kejelasan dan Kecepatan Tampilnya Informasi Keaslian Batik
by: Paminto Agung Christianto, et al.
Published: (2019-05-01) -
Feature Extraction using Histogram of Oriented Gradients and Moments with Random Forest Classification for Batik Pattern Detection
by: wafiq azizah, et al.
Published: (2025-01-01) -
Analysis of workload and fatigue Batik Cap workers in Sukoharjo
by: Mathilda Sri Lestari, et al.
Published: (2024-12-01) -
Analisis Konsep Fisika pada Proses Pembuatan Batik Gambo Musi Banyuasin
by: Suharli AJ, et al.
Published: (2024-11-01)