Robust Command Filtered Adaptive Backstepping Control for a Quadrotor Aircraft

This paper addresses a robust trajectory tracking controller for an underactuated quadrotor with external bounded disturbances and unknown inertia parameters. Different from most of the existing control algorithms, the proposed method does not adopt the dual-loop scheme in which the design is divide...

Full description

Saved in:
Bibliographic Details
Main Authors: Yicheng Liu, Junhui Ma, Haiyan Tu
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Control Science and Engineering
Online Access:http://dx.doi.org/10.1155/2018/1854648
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses a robust trajectory tracking controller for an underactuated quadrotor with external bounded disturbances and unknown inertia parameters. Different from most of the existing control algorithms, the proposed method does not adopt the dual-loop scheme in which the design is divided into position control and attitude control. Instead, command filter backstepping is employed to design the controller based on the integrated motion model such that the stability can be guaranteed strictly for the flight control system. Furthermore, adaptive compensation and robust compensation are introduced to deal with the uncertainty of the inertia parameters and the external bounded disturbances, respectively. Finally, a similar skew symmetric structure is chosen as the desired structure of the closed-loop system to facilitate the analysis of the stability of the integrated system. Stability and robust performance of the designed controller are verified by Lyapunov stability theorem. Simulations are provided to validate the proposed controller.
ISSN:1687-5249
1687-5257