Medical image segmentation by combining feature enhancement Swin Transformer and UperNet
Abstract Medical image segmentation plays a crucial role in assisting clinical diagnosis, yet existing models often struggle with handling diverse and complex medical data, particularly when dealing with multi-scale organ and tissue structures. This paper proposes a novel medical image segmentation...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-97779-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Medical image segmentation plays a crucial role in assisting clinical diagnosis, yet existing models often struggle with handling diverse and complex medical data, particularly when dealing with multi-scale organ and tissue structures. This paper proposes a novel medical image segmentation model, FE-SwinUper, designed to address these challenges by integrating the strengths of the Swin Transformer and UPerNet architectures. The objective is to enhance multi-scale feature extraction and improve the fusion of hierarchical organ and tissue representations through a feature enhancement Swin Transformer (FE-ST) backbone and an adaptive feature fusion (AFF) module. The FE-ST backbone utilizes self-attention mechanisms to efficiently extract rich spatial and contextual features across different scales, while the AFF module adapts to multi-scale feature fusion, mitigating the loss of contextual information. We evaluate the model on two publicly available medical image segmentation datasets: Synapse multi-organ segmentation dataset and the ACDC cardiac segmentation dataset. Our results show that FE-SwinUper outperforms existing state-of-the-art models in terms of Dice coefficient, pixel accuracy, and Hausdorff distance. The model achieves a Dice score of 91.58% on the Synapse dataset and 90.15% on the ACDC dataset. These results demonstrate the robustness and efficiency of the proposed model, indicating its potential for real-world clinical applications. |
|---|---|
| ISSN: | 2045-2322 |