Orthodox Γ-semigroups
Let M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1990-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S016117129000076X |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832548305990582272 |
---|---|
author | M. K. Sen N. K. Saha |
author_facet | M. K. Sen N. K. Saha |
author_sort | M. K. Sen |
collection | DOAJ |
description | Let M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox semigroups to orthodox Γ-semigroups. |
format | Article |
id | doaj-art-f8b8fa11af864056ba274067ffc1b208 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 1990-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-f8b8fa11af864056ba274067ffc1b2082025-02-03T06:15:13ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113352753410.1155/S016117129000076XOrthodox Γ-semigroupsM. K. Sen0N. K. Saha1Department of Pure Mathematics, 35, Ballygunge Circular Road, Calcutta 700 019, IndiaDepartment of Mathematics, Pingla Thana Mahavidyalaya, P.O. Maligram, Dist. Midnapore, Pin, 721 140, IndiaLet M={a,b,c,…} and Γ={α,β,γ,…} be two non-empty sets. M is called a Γ-semigroup if aαb∈M, for α∈Γ and b∈M and (aαb)βc=aα(bβc), for all a,b,c∈M and for all α,β∈Γ. A semigroup can be considered as a Γ-semigroup. In this paper we introduce orthodox Γ-semigroups and extend different results of orthodox semigroups to orthodox Γ-semigroups.http://dx.doi.org/10.1155/S016117129000076X |
spellingShingle | M. K. Sen N. K. Saha Orthodox Γ-semigroups International Journal of Mathematics and Mathematical Sciences |
title | Orthodox Γ-semigroups |
title_full | Orthodox Γ-semigroups |
title_fullStr | Orthodox Γ-semigroups |
title_full_unstemmed | Orthodox Γ-semigroups |
title_short | Orthodox Γ-semigroups |
title_sort | orthodox γ semigroups |
url | http://dx.doi.org/10.1155/S016117129000076X |
work_keys_str_mv | AT mksen orthodoxgsemigroups AT nksaha orthodoxgsemigroups |