Pareto optimality for nonlinear infinite dimensional control systems

In this note we establish the existence of Pareto optimal solutions for nonlinear, infinite dimensional control systems with state dependent control constraints and an integral criterion taking values in a separable, reflexive Banach lattice. An example is also presented in detail. Our result extend...

Full description

Saved in:
Bibliographic Details
Main Authors: Evgenios P. Avgerinos, Nikolaos S. Papageorgiou
Format: Article
Language:English
Published: Wiley 1990-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171290000357
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850162622056366080
author Evgenios P. Avgerinos
Nikolaos S. Papageorgiou
author_facet Evgenios P. Avgerinos
Nikolaos S. Papageorgiou
author_sort Evgenios P. Avgerinos
collection DOAJ
description In this note we establish the existence of Pareto optimal solutions for nonlinear, infinite dimensional control systems with state dependent control constraints and an integral criterion taking values in a separable, reflexive Banach lattice. An example is also presented in detail. Our result extends earlier ones obtained by Cesari and Suryanarayana.
format Article
id doaj-art-f8b3baf8959d40e6a03dbba7e0edbbf5
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1990-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-f8b3baf8959d40e6a03dbba7e0edbbf52025-08-20T02:22:30ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113223324210.1155/S0161171290000357Pareto optimality for nonlinear infinite dimensional control systemsEvgenios P. Avgerinos0Nikolaos S. Papageorgiou1University of Thessaloniki, School of Technology, Thessaloniki 54006, GreeceUniversity of California, 1015 Department of Mathematics, Davis 95616, California, USAIn this note we establish the existence of Pareto optimal solutions for nonlinear, infinite dimensional control systems with state dependent control constraints and an integral criterion taking values in a separable, reflexive Banach lattice. An example is also presented in detail. Our result extends earlier ones obtained by Cesari and Suryanarayana.http://dx.doi.org/10.1155/S0161171290000357Pareto efficient pointsBanach latticemild solutionevolution operatorcompactnessFatou's lemmaorientor fieldnonlinear parabolic equation.
spellingShingle Evgenios P. Avgerinos
Nikolaos S. Papageorgiou
Pareto optimality for nonlinear infinite dimensional control systems
International Journal of Mathematics and Mathematical Sciences
Pareto efficient points
Banach lattice
mild solution
evolution operator
compactness
Fatou's lemma
orientor field
nonlinear parabolic equation.
title Pareto optimality for nonlinear infinite dimensional control systems
title_full Pareto optimality for nonlinear infinite dimensional control systems
title_fullStr Pareto optimality for nonlinear infinite dimensional control systems
title_full_unstemmed Pareto optimality for nonlinear infinite dimensional control systems
title_short Pareto optimality for nonlinear infinite dimensional control systems
title_sort pareto optimality for nonlinear infinite dimensional control systems
topic Pareto efficient points
Banach lattice
mild solution
evolution operator
compactness
Fatou's lemma
orientor field
nonlinear parabolic equation.
url http://dx.doi.org/10.1155/S0161171290000357
work_keys_str_mv AT evgeniospavgerinos paretooptimalityfornonlinearinfinitedimensionalcontrolsystems
AT nikolaosspapageorgiou paretooptimalityfornonlinearinfinitedimensionalcontrolsystems