Pareto optimality for nonlinear infinite dimensional control systems
In this note we establish the existence of Pareto optimal solutions for nonlinear, infinite dimensional control systems with state dependent control constraints and an integral criterion taking values in a separable, reflexive Banach lattice. An example is also presented in detail. Our result extend...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
1990-01-01
|
| Series: | International Journal of Mathematics and Mathematical Sciences |
| Subjects: | |
| Online Access: | http://dx.doi.org/10.1155/S0161171290000357 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850162622056366080 |
|---|---|
| author | Evgenios P. Avgerinos Nikolaos S. Papageorgiou |
| author_facet | Evgenios P. Avgerinos Nikolaos S. Papageorgiou |
| author_sort | Evgenios P. Avgerinos |
| collection | DOAJ |
| description | In this note we establish the existence of Pareto optimal solutions for nonlinear, infinite dimensional control systems with state dependent control constraints and an integral criterion taking values in a separable, reflexive Banach lattice. An example is also presented in detail. Our result extends earlier ones obtained by Cesari and Suryanarayana. |
| format | Article |
| id | doaj-art-f8b3baf8959d40e6a03dbba7e0edbbf5 |
| institution | OA Journals |
| issn | 0161-1712 1687-0425 |
| language | English |
| publishDate | 1990-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | International Journal of Mathematics and Mathematical Sciences |
| spelling | doaj-art-f8b3baf8959d40e6a03dbba7e0edbbf52025-08-20T02:22:30ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251990-01-0113223324210.1155/S0161171290000357Pareto optimality for nonlinear infinite dimensional control systemsEvgenios P. Avgerinos0Nikolaos S. Papageorgiou1University of Thessaloniki, School of Technology, Thessaloniki 54006, GreeceUniversity of California, 1015 Department of Mathematics, Davis 95616, California, USAIn this note we establish the existence of Pareto optimal solutions for nonlinear, infinite dimensional control systems with state dependent control constraints and an integral criterion taking values in a separable, reflexive Banach lattice. An example is also presented in detail. Our result extends earlier ones obtained by Cesari and Suryanarayana.http://dx.doi.org/10.1155/S0161171290000357Pareto efficient pointsBanach latticemild solutionevolution operatorcompactnessFatou's lemmaorientor fieldnonlinear parabolic equation. |
| spellingShingle | Evgenios P. Avgerinos Nikolaos S. Papageorgiou Pareto optimality for nonlinear infinite dimensional control systems International Journal of Mathematics and Mathematical Sciences Pareto efficient points Banach lattice mild solution evolution operator compactness Fatou's lemma orientor field nonlinear parabolic equation. |
| title | Pareto optimality for nonlinear infinite dimensional control systems |
| title_full | Pareto optimality for nonlinear infinite dimensional control systems |
| title_fullStr | Pareto optimality for nonlinear infinite dimensional control systems |
| title_full_unstemmed | Pareto optimality for nonlinear infinite dimensional control systems |
| title_short | Pareto optimality for nonlinear infinite dimensional control systems |
| title_sort | pareto optimality for nonlinear infinite dimensional control systems |
| topic | Pareto efficient points Banach lattice mild solution evolution operator compactness Fatou's lemma orientor field nonlinear parabolic equation. |
| url | http://dx.doi.org/10.1155/S0161171290000357 |
| work_keys_str_mv | AT evgeniospavgerinos paretooptimalityfornonlinearinfinitedimensionalcontrolsystems AT nikolaosspapageorgiou paretooptimalityfornonlinearinfinitedimensionalcontrolsystems |