Long-Term Prediction of Biological Wastewater Treatment Process Behavior via Wiener-Laguerre Network Model

A Wiener-Laguerre model with artificial neural network (ANN) as its nonlinear static part was employed to describe the dynamic behavior of a sequencing batch reactor (SBR) used for the treatment of dye-containing wastewater. The model was developed based on the experimental data obtained from the tr...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasaman Sanayei, Naz Chaibakhsh, Ali Chaibakhsh, Ali Reza Pendashteh, Norli Ismail, Tjoon Tow Teng
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Chemical Engineering
Online Access:http://dx.doi.org/10.1155/2014/248450
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Wiener-Laguerre model with artificial neural network (ANN) as its nonlinear static part was employed to describe the dynamic behavior of a sequencing batch reactor (SBR) used for the treatment of dye-containing wastewater. The model was developed based on the experimental data obtained from the treatment of an effluent containing a reactive textile azo dye, Cibacron yellow FN-2R, by Sphingomonas paucimobilis bacterium. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was α=0.44. In order to adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2>0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics.
ISSN:1687-806X
1687-8078