A Lightweight Intrusion Detection System for IoT and UAV Using Deep Neural Networks with Knowledge Distillation
Deep neural networks (DNNs) are highly effective for intrusion detection systems (IDS) due to their ability to learn complex patterns and detect potential anomalies within the systems. However, their high resource consumption requirements including memory and computation make them difficult to deplo...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Computers |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-431X/14/7/291 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Deep neural networks (DNNs) are highly effective for intrusion detection systems (IDS) due to their ability to learn complex patterns and detect potential anomalies within the systems. However, their high resource consumption requirements including memory and computation make them difficult to deploy on low-powered platforms. This study explores the possibility of using knowledge distillation (KD) to reduce constraints such as power and hardware consumption and improve real-time inference speed but maintain high detection accuracy in IDS across all attack types. The technique utilizes the transfer of knowledge from DNNs (teacher) models to more lightweight shallow neural network (student) models. KD has been proven to achieve significant parameter reduction (92–95%) and faster inference speed (7–11%) while improving overall detection performance (up to 6.12%). Experimental results on datasets such as NSL-KDD, UNSW-NB15, CIC-IDS2017, IoTID20, and UAV IDS demonstrate DNN with KD’s effectiveness in achieving high accuracy, precision, F1 score, and area under the curve (AUC) metrics. These findings confirm KD’s ability as a potential edge computing strategy for IoT and UAV devices, which are suitable for resource-constrained environments and lead to real-time anomaly detection for next-generation distributed systems. |
|---|---|
| ISSN: | 2073-431X |