Fano Resonant Sensing in MIM Waveguide Structures Based on Multiple Circular Split-Ring Resonant Cavities

In this work, a non-through metal–insulator–metal (MIM) waveguide capable of exciting three Fano resonances was designed and numerically studied using the finite element method. Fano resonances are achieved through the interaction between the modes of multiple circular split-ring resonator cavities...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenjing Wang, Shaoze Zhang, Huiliang Cao
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/2/183
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a non-through metal–insulator–metal (MIM) waveguide capable of exciting three Fano resonances was designed and numerically studied using the finite element method. Fano resonances are achieved through the interaction between the modes of multiple circular split-ring resonator cavities and the waveguide. The effect of coupling between different resonators on the Fano resonance peaks is investigated. Independent tuning of the Fano resonance wavelength and transmission rate is accomplished by modifying the structural rotation angle and geometric parameters. After optimizing these parameters, the structure achieves an optimal refractive index sensitivity of 946.88 nm/RIU and a figure of merit of 99.17. The proposed structure holds potential for guiding the design of nanosensors.
ISSN:2072-666X