A New Algorithm for Computing the Distance and the Diameter in Circulant Graphs

In the present study, we focus on circulant graphs, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub><mrow><mo>(</mo>&l...

Full description

Saved in:
Bibliographic Details
Main Authors: Laila Loudiki, Mustapha Kchikech
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/5/261
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, we focus on circulant graphs, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, with set of vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> and in which two distinct vertices <i>i</i> and <i>j</i> are adjacent if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mi>n</mi></msub><mo>∈</mo><mi>S</mi></mrow></semantics></math></inline-formula>, where <i>S</i> is a generating set. Despite their regularity, there are currently no established formulas to accurately determine the distance and the diameter of circulant graphs. In light of this context, we present in this paper a novel approach, which relies on a simple algorithm, capable of yielding formulas for the distance and the diameter of circulant graphs without implementing any graph.
ISSN:1999-4893