Human Activity Recognition Based on the Hierarchical Feature Selection and Classification Framework

Human activity recognition via triaxial accelerometers can provide valuable information for evaluating functional abilities. In this paper, we present an accelerometer sensor-based approach for human activity recognition. Our proposed recognition method used a hierarchical scheme, where the recognit...

Full description

Saved in:
Bibliographic Details
Main Author: Yuhuang Zheng
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Journal of Electrical and Computer Engineering
Online Access:http://dx.doi.org/10.1155/2015/140820
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human activity recognition via triaxial accelerometers can provide valuable information for evaluating functional abilities. In this paper, we present an accelerometer sensor-based approach for human activity recognition. Our proposed recognition method used a hierarchical scheme, where the recognition of ten activity classes was divided into five distinct classification problems. Every classifier used the Least Squares Support Vector Machine (LS-SVM) and Naive Bayes (NB) algorithm to distinguish different activity classes. The activity class was recognized based on the mean, variance, entropy of magnitude, and angle of triaxial accelerometer signal features. Our proposed activity recognition method recognized ten activities with an average accuracy of 95.6% using only a single triaxial accelerometer.
ISSN:2090-0147
2090-0155