Experimental Study on Dynamic Behavior of Acrylonitrile-Butadiene-Styrene (ABS) Based Nano Composite Reinforced by Nano Silica Addition

In the present research, an experimental study was carried out to assess the vibrational behavior of Acrylonitrile-Butadiene-Styrene (ABS) based Nano composites reinforced by Nano-silica particles. Therefore, the twin extruder methodology was used to fabricate the Nano composite samples.   The silic...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Rahmani, Yasser Rostamiyan
Format: Article
Language:English
Published: Semnan University 2020-11-01
Series:Mechanics of Advanced Composite Structures
Subjects:
Online Access:https://macs.semnan.ac.ir/article_4305_cbec054fd2e08a9137477271bf02fab5.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present research, an experimental study was carried out to assess the vibrational behavior of Acrylonitrile-Butadiene-Styrene (ABS) based Nano composites reinforced by Nano-silica particles. Therefore, the twin extruder methodology was used to fabricate the Nano composite samples.   The silica content and extrusion temperature were considered as variable parameters. The samples were prepared based on bending test standards and then subjected to dynamic mechanical and thermal analysis machines. To identify the effect of SiO2 content and presence of defects in the fabricated samples, 12 experiments were carried out and the obtained results analyzed based on scanning electron microscopy (SEM) images of the samples’ cross section and the graphs, which were obtained from the aforementioned tests. As a result, it was found from the results that by increasing the silica content up to 2%, the static and dynamic strength of the fabricated Nano-composite were significantly enhanced. However, by a further increase of silica content, it was found that the fabricated samples showed brittle behavior causing reduction of strength properties. On the other hand, for defected samples, the static and dynamic forces of the fabricated composite reached a maximum at 3% and 4% of Nano-silica content, respectively. It was also found from the results that the increase of silica content caused a reduction in the damping behavior of fabricated composites for both the perfect and defected samples. This trend could be attributed to the fact that an increase of silica content increased the storage modulus in common surfaces between polymeric layers and the reinforcement material.
ISSN:2423-4826
2423-7043