Generalized Alpha-Close-to-Convex Functions

We define the classes Gβ(α,k,γ) as follows: f∈Gβ(α,k,γ) if and only if, for z∈E={z∈ℂ:|z|<1}, |arg{(1-α2z2)f′(z)/e−iβϕ′(z)}|≤γπ/2, 0<γ≤1; α∈[0,1]; β∈(−π/2,π/2), where ϕ is a function of bounded boundary rotation. Coefficient estimates, an inclusion result, arclength problem, and some other pr...

Full description

Saved in:
Bibliographic Details
Main Authors: K. Inayat Noor, Halit Orhan, Saima Mustafa
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2009/830592
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850161498940243968
author K. Inayat Noor
Halit Orhan
Saima Mustafa
author_facet K. Inayat Noor
Halit Orhan
Saima Mustafa
author_sort K. Inayat Noor
collection DOAJ
description We define the classes Gβ(α,k,γ) as follows: f∈Gβ(α,k,γ) if and only if, for z∈E={z∈ℂ:|z|<1}, |arg{(1-α2z2)f′(z)/e−iβϕ′(z)}|≤γπ/2, 0<γ≤1; α∈[0,1]; β∈(−π/2,π/2), where ϕ is a function of bounded boundary rotation. Coefficient estimates, an inclusion result, arclength problem, and some other properties of these classes are studied.
format Article
id doaj-art-f6f2ab4404d741d4a82cc68bcb21e3c8
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2009-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-f6f2ab4404d741d4a82cc68bcb21e3c82025-08-20T02:22:49ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252009-01-01200910.1155/2009/830592830592Generalized Alpha-Close-to-Convex FunctionsK. Inayat Noor0Halit Orhan1Saima Mustafa2Department of Mathematics, COMSATS Institute of Information Technology, Islamabad 44000, PakistanDepartment of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, TurkeyDepartment of Mathematics, COMSATS Institute of Information Technology, Islamabad 44000, PakistanWe define the classes Gβ(α,k,γ) as follows: f∈Gβ(α,k,γ) if and only if, for z∈E={z∈ℂ:|z|<1}, |arg{(1-α2z2)f′(z)/e−iβϕ′(z)}|≤γπ/2, 0<γ≤1; α∈[0,1]; β∈(−π/2,π/2), where ϕ is a function of bounded boundary rotation. Coefficient estimates, an inclusion result, arclength problem, and some other properties of these classes are studied.http://dx.doi.org/10.1155/2009/830592
spellingShingle K. Inayat Noor
Halit Orhan
Saima Mustafa
Generalized Alpha-Close-to-Convex Functions
International Journal of Mathematics and Mathematical Sciences
title Generalized Alpha-Close-to-Convex Functions
title_full Generalized Alpha-Close-to-Convex Functions
title_fullStr Generalized Alpha-Close-to-Convex Functions
title_full_unstemmed Generalized Alpha-Close-to-Convex Functions
title_short Generalized Alpha-Close-to-Convex Functions
title_sort generalized alpha close to convex functions
url http://dx.doi.org/10.1155/2009/830592
work_keys_str_mv AT kinayatnoor generalizedalphaclosetoconvexfunctions
AT halitorhan generalizedalphaclosetoconvexfunctions
AT saimamustafa generalizedalphaclosetoconvexfunctions