Generalized Alpha-Close-to-Convex Functions

We define the classes Gβ(α,k,γ) as follows: f∈Gβ(α,k,γ) if and only if, for z∈E={z∈ℂ:|z|<1}, |arg{(1-α2z2)f′(z)/e−iβϕ′(z)}|≤γπ/2, 0<γ≤1; α∈[0,1]; β∈(−π/2,π/2), where ϕ is a function of bounded boundary rotation. Coefficient estimates, an inclusion result, arclength problem, and some other pr...

Full description

Saved in:
Bibliographic Details
Main Authors: K. Inayat Noor, Halit Orhan, Saima Mustafa
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2009/830592
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We define the classes Gβ(α,k,γ) as follows: f∈Gβ(α,k,γ) if and only if, for z∈E={z∈ℂ:|z|<1}, |arg{(1-α2z2)f′(z)/e−iβϕ′(z)}|≤γπ/2, 0<γ≤1; α∈[0,1]; β∈(−π/2,π/2), where ϕ is a function of bounded boundary rotation. Coefficient estimates, an inclusion result, arclength problem, and some other properties of these classes are studied.
ISSN:0161-1712
1687-0425