Coassociative grammar, periodic orbits, and quantum random walk over ℤ
Inspired by a work of Joni and Rota, we show that the combinatorics generated by a quantisation of the Bernoulli random walk over ℤ can be described from a coassociative coalgebra. Relationships between this coalgebra and the set of periodic orbits of the classical chaotic system x↦2x mod1, x∈[0,...
Saved in:
Main Author: | Philippe Leroux |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS.2005.3979 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Directivity of Quantum Walk via Its Random Walk Replica
by: Tomoki Yamagami, et al.
Published: (2022-01-01) -
A Novel Algorithm of Quantum Random Walk in Server Traffic Control and Task Scheduling
by: Dong Yumin, et al.
Published: (2014-01-01) -
Proposal of a quantum version of active particles via a nonunitary quantum walk
by: Manami Yamagishi, et al.
Published: (2024-11-01) -
High-Precision Continuation of Periodic Orbits
by: Ángeles Dena, et al.
Published: (2012-01-01) -
This is Grammar /
by: Lowery, Josephine P.
Published: (1965)