An Improved Unscented Kalman Filter Algorithm for Radar Azimuth Mutation

An improved UKF (Unscented Kalman Filter) algorithm is proposed to solve the problem of radar azimuth mutation. Since the radar azimuth angle will restart to count after each revolution of the radar, and when the aircraft just passes the abrupt angle change, the radar observation measurement will ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Dazhang You, Pan Liu, Wei Shang, Yepeng Zhang, Yawei Kang, Jun Xiong
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2020/8863286
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An improved UKF (Unscented Kalman Filter) algorithm is proposed to solve the problem of radar azimuth mutation. Since the radar azimuth angle will restart to count after each revolution of the radar, and when the aircraft just passes the abrupt angle change, the radar observation measurement will have a sudden change, which has serious consequences and is solved by the proposed novel UKF based on SVD. In order to improve the tracking accuracy and stability of the radar tracking system further, the SVD-MUKF (Singular Value Decomposition-based Memory Unscented Kalman Filter) based on multiple memory fading is constructed. Furthermore, several simulation results show that the SVD-MUKF algorithm proposed in this paper is better than the SVD-UKF (Singular Value Decomposition of Unscented Kalman Filter) algorithm and classical UKF algorithm in accuracy and stability. Last but not the least, the SVD-MUKF can achieve stable tracking of targets even in the case of angle mutation.
ISSN:1687-5966
1687-5974