Impact of East Pacific La Niña on Caribbean Climate
Statistical cluster analysis applied to monthly 1–100 m ocean temperatures reveals El Niño–Southern Oscillation (ENSO) dipole patterns with a leading mode having opposing centers of action across the dateline and tropical east Pacific. We focus on the La Niña cold phase and study its impact on the C...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/4/485 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Statistical cluster analysis applied to monthly 1–100 m ocean temperatures reveals El Niño–Southern Oscillation (ENSO) dipole patterns with a leading mode having opposing centers of action across the dateline and tropical east Pacific. We focus on the La Niña cold phase and study its impact on the Caribbean climate over the period of 1980–2024. East dipole time scores are used to identify composite years, and anomaly patterns are calculated for Jan-Jun and Jul-Dec. Convective responses over the Caribbean exhibit seasonal contrasts: dry winter–spring and wet summer–autumn. Trade winds and currents across the southern Caribbean weaken and lead to anomalous warming of upper ocean temperatures. Sustained coastal upwelling off Peru and Ecuador during east La Niña is teleconnected with easterly wind shear and tropical cyclogenesis over the Caribbean during summer, leading to costly impacts. This ocean–atmosphere coupling is quite different from the more common central Pacific ENSO dipole. |
|---|---|
| ISSN: | 2073-4433 |